Abstract
The purpose of this paper is to provide a comprehensive state of the art of fatigue and cyclic loading of natural rock materials. Papers published in the literature are classified and listed in order to ease bibliographical review, to gather data (sometimes contradictory) on classical experimental results and to analyse the main interpretation concepts. Their advantages and limitations are discussed, and perspectives for further work are highlighted. The first section summarises and defines the different experimental set-ups (type of loading, type of experiment) already applied to cyclic/fatigue investigation of rock materials. The papers are then listed based on these different definitions. Typical results are highlighted in next section. Fatigue/cyclic loading mainly results in accumulation of plastic deformation and/or damage cycle after cycle. A sample cyclically loaded at constant amplitude finally leads to failure even if the peak load is lower than its monotonic strength. This subcritical crack is due to a diffuse microfracturing and decohesion of the rock structure. The third section reviews and comments the concepts used to interpret the results. The fatigue limit and S–N curves are the most common concepts used to describe fatigue experiments. Results published from all papers are gathered into a single figure to highlight the tendency. Predicting the monotonic peak strength of a sample is found to be critical in order to compute accurate S–N curves. Finally, open questions are listed to provide a state of the art of grey areas in the understanding of fatigue mechanisms and challenges for the future.





















Similar content being viewed by others
References
Åkesson U, Hansson J, Stigh J (2004) Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Eng Geol 72(1–2):131–142. doi:10.1016/j.enggeo.2003.07.001
Alarcon-Guzman A, Leonards G, Chameau J (1989) Undrained monotonic and cyclic strength of sand. J Geotech Eng ASCE 114(10):1089–1109
Anderson O, Grew P (1977) Stress corrosion theory of crack propagation with applications to geophysics. Rev Geophys 15(1):77–104
Antonaci P, Bocca P, Masera D (2012) Fatigue crack propagation monitoring by acoustic emission signal analysis. Eng Fract Mech 81:26–32. doi:10.1016/j.engfracmech.2011.09.017
Atkinson B (1984) Subcritical crack growth in geological materials. J Geophys Res 89(B6):4077. doi:10.1029/JB089iB06p04077
Attewell P, Farmer W (1973) Fatigue behaviour of rock. Int J Rock Mech Min Sci 10:1–9
Attewell P, Sandford M (1974) Intrinsic shear strength of a brittle, anisotropic rock: experimental and mechanical interpretation. Int J Rock Mech Min Sci Geomech Abstr 11(11):423–430
Bagde M, Petroš V (2005) Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading. Int J Rock Mech Min Sci 42(2):237–250. doi:10.1016/j.ijrmms.2004.08.008
Bagde MN, Petroš V (2005) Waveform effect on fatigue properties of intact sandstone in uniaxial cyclical loading. Rock Mech Rock Eng 38(3):169–196. doi:10.1007/s00603-005-0045-8
Bastian T, Connelly B, Lazo Olivares C, Yfantidis N, Taheri A (2014) Progressive damage of hawkesbury sandstone subjected to systematic cyclic loading. Min Educ Aust J Res Proj Rev 3:7–14
Baud P, Zhu W, Wong T-F (2000) In the brittle faulting regime, damage mechanics models predict that the uniaxial compressive strength scales with presence of water the confined brittle strength the pore will be denoted by Pt. J Geophys Res 105:371–389
Bertuzzi R, Douglas K, Mostyn G (2016) Comparison of intact rock strength criteria for pragmatic design. Int J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0001644
Bieniawski Z (1967) Mechanism of brittle fracture of rock: part II experimental studies. Int J Rock Mech Min Sci 4:407–423
Brantut N, Heap M, Baud P, Meredith P (2014) Rate- and strain-dependent brittle deformation of rocks. J Geophys Res Solid Earth. doi:10.1002/2013JB010448.Received
Brantut N, Heap M, Meredith P, Baud P (2013) Time-dependent cracking and brittle creep in crustal rocks: a review. J Struct Geol 52:17–43. doi:10.1016/j.jsg.2013.03.007
Brown E, Hudson J (1974) Fatigue failure characteristics of some models of jointed rocks. Earthq Eng Struct Dyn 2:379–386
Bubeck A, Walker R, Healy D, Dobbs M, Holwell D (2017) Pore geometry as a control on rock strength. Earth Planet Sci Lett 457:38–48. doi:10.1016/j.epsl.2016.09.050
Burdine N (1963) Rock failure under dynamic loading conditions. Soc Petrol Eng J 3(01):1–8
Cardani G, Meda A (2004) Marble behaviour under monotonic and cyclic loading in tension. Constr Build Mater 18(6):419–424. doi:10.1016/j.conbuildmat.2004.03.012
Cattaneo S, Labuz J (2001) Damage of marble from cyclic loading. J Mater Civ Eng 13(December):459–465
Celestino T, Bortolucci A, Nobrega C (1995) Determination of rock fracture toughness under creep and fatigue. In: Proceedings of the 35th US symposium on rock mechanics. Reno, New York, pp 147–152
Cho S, Ogata Y, Kaneko K (2003) Strain-rate dependency of the dynamic tensile strength of rock. Int J Rock Mech Min Sci 40(5):763–777
Chow TM, Meglis IL, Young RP (1995) Progressive microcrack development in tests on Lac du Bonnet granite—II. Ultrasonic tomographic imaging. Int J Rock Mech Min Sci 32(8):751–761. doi:10.1016/0148-9062(95)00015-9
Ciantia M, Castellanza R, di Prisco C (2014) Experimental study on the water-induced weakening of calcarenites. Rock Mech Rock Eng 48(2):441–461. doi:10.1007/s00603-014-0603-z
Cosenza P, Ghoreychi M, Bazargan-Sabet B, de Marsily G (1999) In situ rock salt permeability measurement for long term safety assessment of storage. Int J Rock Mech Min Sci 36:509–526. doi:10.1016/S0148-9062(99)00017-0
Costin LS, Holcomb DJ (1981) Time-dependent failure of rock under cyclic loading. Tectonophysics 79(3–4):279–296. doi:10.1016/0040-1951(81)90117-7
Cruden D (1974) The static fatigue of brittle rock under uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr 11(2):67–73
David E, Brantut N, Schubnel A, Zimmerman R (2012) Sliding crack model for nonlinearity and hysteresis in the uniaxial stress strain curve of rock. Int J Rock Mech Min Sci 52:9–17. doi:10.1016/j.ijrmms.2012.02.001
Eberhardt E, Stead D, Stimpson B (1999) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380
Erarslan N (2016) Microstructural investigation of subcritical crack propagation and fracture process zone (FPZ) by the reduction of rock fracture toughness under cyclic loading. Eng Geol 208:181–190. doi:10.1016/j.enggeo.2016.04.035
Erarslan N, Alehossein H, Williams DJ (2014) Tensile fracture strength of Brisbane tuff by static and cyclic loading tests. Rock Mech Rock Eng 47(4):1135–1151. doi:10.1007/s00603-013-0469-5
Erarslan N, Williams D (2012a) Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng 45(3):327–340. doi:10.1007/s00603-011-0209-7
Erarslan N, Williams D (2012) Mechanism of rock fatigue damage in terms of fracturing modes. Int J Fatigue 43:76–89. doi:10.1016/j.ijfatigue.2012.02.008
Evans A, Fuller R (1974) Crack propagation in ceramic materials under cyclic loading conditions. Metall Trans 5:27–33
Fan J, Chen J, Jiang D, Chemenda A, Chen J, Ambre J (2017) Discontinuous cyclic loading tests of salt with acoustic emission monitoring. Int J Fatigue 94:140–144. doi:10.1016/j.ijfatigue.2016.09.016
Fan J, Chen J, Jiang D, Ren S, Wu J (2016) Fatigue properties of rock salt subjected to interval cyclic pressure. Int J Fatigue 90:109–115. doi:10.1016/j.ijfatigue.2016.04.021
Faoro I, Vinciguerra S, Marone C, Elsworth D, Schubnel A (2013) Linking permeability to crack density evolution in thermally stressed rocks under cyclic loading. Geophys Res Lett 40(February):2590–2595. doi:10.1002/grl.50436
Fredrich J, Evans B, Wong T (1989) Micromechanics of the brittle to plastic transition in Carrara marble. J Geophys Res 94:4129–4145. doi:10.1029/JB094iB04p04129
Fuenkajorn K, Phueakphum D (2010) Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Eng Geol 112(1–4):43–52. doi:10.1016/j.enggeo.2010.01.002
Gatelier N, Pellet F, Loret B (2002) Mechanical damage of an anisotropic porous rock in cyclic triaxial tests. Int J Rock Mech Min Sci 39(3):335–354. doi:10.1016/S1365-1609(02)00029-1
Ghamgosar M, Erarslan N (2016) Experimental and numerical studies on development of fracture process zone (FPZ) in rocks under cyclic and static loadings. Rock Mech Rock Eng 49(3):893–908. doi:10.1007/s00603-015-0793-z
Ghamgosar M, Erarslan N, Williams D (2017) Experimental Investigation of fracture process zone in rocks damaged under cyclic loadings. Exp Mech 57:97–113. doi:10.1007/s11340-016-0216-4
Gong M, Smith I (2003) Effect of waveform and loading sequence on low-cycle compressive fatigue life of spruce. J Mater Civ Eng 15(February):93–99
Griffiths L, Heap M, Xu T, Chen C-F, Baud P (2017) The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol 96:149–160. doi:10.1016/j.jsg.2017.02.006
Grover H, Dehlinger P, McClure G (1950) Investigation of fatigue characteristics of rocks. Technical report, Drilling Research Inc
Guo Y, Yang C, Mao H (2012) Mechanical properties of Jintan mine rock salt under complex stress paths. Int J Rock Mech Min Sci 56:54–61. doi:10.1016/j.ijrmms.2012.07.025
Haimson BC, Kim CM (1971) Mechanical behaviour of rock under cyclic fatigue. In: Cording EJ (ed) Stability of rock slopes. Proceedings of the 13th symposium on rock mechanics. ASCE, New York, pp 845–863
Hale P, Shakoor A (2003) A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ Eng Geosci 9(2):117–130. doi:10.2113/9.2.117
Hashash Y, Hook J, Schmidt B, I-Chiang Yao J (2001) Seismic design and analysis of underground structures. Tunn Undergr Space Technol 16(4):247–293. doi:10.1016/S0886-7798(01)00051-7
Hawkins A, Mcconnell B (1992) Sensitivity of sandstone strength and deformability to changes in moisture content: sandstones studied. Q J Eng Geol 25:115–130. doi:10.1144/GSL.QJEG.1992.025.02.05
Heap M, Faulkner D (2008) Quantifying the evolution of static elastic properties as crystalline rock approaches failure. Int J Rock Mech Min Sci 45:564–573. doi:10.1016/j.ijrmms.2007.07.018
Heap M, Faulkner D, Meredith P, Vinciguerra S (2010) Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation. Geophys J Int 183(1):225–236. doi:10.1111/j.1365-246X.2010.04726.x
Heap MJ, Vinciguerra S, Meredith PG (2009) The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 471(1–2):153–160. doi:10.1016/j.tecto.2008.10.004
Heimisson E, Einarsson P, Sigmundsson F, Brandsdóttir B (2015) Kilometer-scale Kaiser effect identified in Krafla volcano, Iceland. Geophys Res Lett 42:7958–7965. doi:10.1002/2015GL065680.Received
Hoek E, Brown E (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186. doi:10.1016/S1365-1609(97)80069-X
Holcomb D (1993) General theory of the Kaiser effect. Int J Rock Mech Min Sci Geomech Abstr 30(7):929–935
Hudson J, Harrison J (1997) Engineering rock mechanics—an introduction to the principles, 1st edn. Elsevier, Amsterdam
Jamali Zavareh S, Baghbanan A, Hashemolhosseini H, Haghgouei H (2017) Effect of micro-structure on fatigue behaviour of intact rocks under completely reversed load. Anal Numer Methods Min Eng 6:55–62
Jamshidi A, Nikudel M, Khamehchiyan M (2013) Predicting the long-term durability of building stones against freeze-thaw using a decay function model. Cold Reg Sci Technol 92:29–36. doi:10.1016/j.coldregions.2013.03.007
Jiang D, Fan J, Chen J, Li L, Cui Y (2016) A mechanism of fatigue in salt under discontinuous cycle loading. Int J Rock Mech Min Sci 86:255–260. doi:10.1016/j.ijrmms.2016.05.004
Jiang X, Shu-chun L, Yun-qi T, Xiao-jun T, Xin W (2009) Acoustic emission characteristic during rock fatigue damage and failure. Proc Earth Planet Sci 1(1):556–559. doi:10.1016/j.proeps.2009.09.088
Jobli A, Noor M, Tawie R, Hampden A, Julai N (2017) Uniaxial compressive strength of Malaysian weathered granite due to cyclic loading. J Eng Appl Sci 12(14):4298–4301
Kaiser J (1950) An investigation into the occurrence of noises in tensile tests, or a study of acoustic phenomena in tensile tests. Ph.D. thesis, Technische Hochschule Munich
Karakus M, Akdag S, Bruning T (2016) Rock fatigue damage assessment by acoustic emission. In: International conference on geomechanics, geo-energy and geo-resources, September, Melbourne, Australia
Kendrick J, Smith R, Sammonds P, Meredith P, Dainty M, Pallister J (2013) The influence of thermal and cyclic stressing on the strength of rocks from Mount St. Helens, Washington. Bull Volcanol. doi:10.1007/s00445-013-0728-z
Ko T (2005) Crack coalescence in rock-like material under cyclic loading. Ph.D. thesis, Massachusetts Institute of Technology
Kranz R, Harris W, Carter N (1982) Static fatigue of granite at 200. Geophys Res Lett 9(1):1–4. doi:10.1029/GL009i001p00001
Kranz RL (1983) Microcracks in rocks: a review. Tectonophysics 100(1–3):449–480. doi:10.1016/0040-1951(83)90198-1
Kumar A (1968) The effect of stress rate and temperature on the strength of basalt and granite. Geophysics 33(3):501–510
Lavrov A (2001) Kaiser effect observation in brittle rock cyclically loaded with different loading rates. Mech Mater 33(11):669–677. doi:10.1016/S0167-6636(01)00081-3
Lavrov A (2003) The Kaiser effect in rocks: principles and stress estimation techniques. Int J Rock Mech Min Sci 40:151–171. doi:10.1016/S1365-1609(02)00138-7
Lavrov A, Vervoort A, Wevers M, Napier JAL (2002) Experimental and numerical study of the Kaiser effect in cyclic Brazilian tests with disk rotation. Int J Rock Mech Min Sci 39(3):287–302. doi:10.1016/S1365-1609(02)00038-2
Le J, Manning J, Labuz J (2014) Scaling of fatigue crack growth in rock. Int J Rock Mech Min Sci 72:71–79. doi:10.1016/j.ijrmms.2014.08.015
Lee MK, Barr BG (2004) An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement Concr Compos 26(4):299–305. doi:10.1016/S0958-9465(02)00139-7
Li C, Nordlund E (1993) Experimental verification of the Kaiser effect in rocks. Rock Mech Rock Eng 26(4):333–351. doi:10.1007/BF01027116
Li G, Moelle K, Lewis J (1992) Fatigue crack growth in brittle sandstones. Int J Rock Mech Min Sci 29(5):469–477
Li N, Zhang P, Chen Y, Swoboda G (2003) Fatigue properties of cracked, saturated and frozen sandstone samples under cyclic loading. Int J Rock Mech Min Sci 40(1):145–150. doi:10.1016/S1365-1609(02)00111-9
Liu E, He S (2012) Effects of cyclic dynamic loading on the mechanical properties of intact rock samples under confining pressure conditions. Eng Geol 125:81–91. doi:10.1016/j.enggeo.2011.11.007
Liu J, Xie H, Hou Z, Yang C, Chen L (2014) Damage evolution of rock salt under cyclic loading in unixial tests. Acta Geotech 9(1):153–160. doi:10.1007/s11440-013-0236-5
Liu Q, Huang S, Kang Y, Liu X (2015) Cold regions science and technology a prediction model for uniaxial compressive strength of deteriorated rocks due to freeze thaw. Cold Reg Sci Technol 120:96–107. doi:10.1016/j.coldregions.2015.09.013
Liu Y, Dai F, Fan P, Xu N, Dong L (2017a) Experimental investigation of the influence of joint geometric configurations on the mechanical properties of intermittent jointed rock models under cyclic uniaxial compression. Rock Mech Rock Eng 50(6):1453–1471. doi:10.1007/s00603-017-1190-6
Liu Y, Dai F, Xu N, Zhao T (2017b) Cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks cyclic flattened Brazilian disc tests for measuring the tensile fatigue properties of brittle rocks. Rev Sci Instrum. doi:10.1063/1.4995656
Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899
Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1992) Chapter 1 observations of quasistatic fault growth from acoustic emissions. Int Geophys 51:3–31. doi:10.1016/S0074-6142(08)62813-2
Ma L, Liu X, Wang M, Xu H, Hua R, Fan P, Jiang S, Wang G, Yi Q (2013) Experimental investigation of the mechanical properties of rock salt under triaxial cyclic loading. Int J Rock Mech Min Sci 62:34–41. doi:10.1016/j.ijrmms.2013.04.003
Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31(6):643–659
Martin C, Maybee W (2000) The strength of hard-rock pillars. Int J Rock Mech Min Sci 37(8):1239–1246
Martinez-Martinez J, Benavente D, Gomez-Heras M, Marco-Castano L, Garcia-Del-Cura M (2013) Non-linear decay of building stones during freeze-thaw weathering processes. Constr Build Mater 38:443–454. doi:10.1016/j.conbuildmat.2012.07.059
Meglis IL, Chow TM, Young RP (1995) Progressive microcrack development in tests on Lac du Bonnet granite—I. Acoustic emission source location and velocity measurement. Int J Rock Mech Min Sci 32(8):741–750. doi:10.1016/0148-9062(95)00015-9
Meng Q, Zhang M, Han L, Pu H, Nie T (2016) Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression. Rock Mech Rock Eng 49(10):3873–3886. doi:10.1007/s00603-016-1077-y
Michalske T, Freiman S (1982) A molecular interpretation of stress corrosion in silica. Nature 295:511–512
Michalske T, Freiman S (1983) A molecular mechanism for stress corrosion in vitreous silica. J Am Ceram Soc 66(4):284–288
Miner M (1945) Cumulative damage in fatigue. J Appl Mech 12(3):159–164
Mitchell T, Faulkner D (2008) Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones. J Geophys Res Solid Earth 113(11):1–16. doi:10.1029/2008JB005588
Momeni A, Karakus M, Khanlari GR, Heidari M (2015) Effects of cyclic loading on the mechanical properties of a granite. Int J Rock Mech Min Sci 77:89–96. doi:10.1016/j.ijrmms.2015.03.029
Morales Demarco M, Jahns E, Rüdrich J, Oyhantcabal P, Siegesmund S (2007) The impact of partial water saturation on rock strength: an experimental study on sandstone. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 158(4):869–882. doi:10.1127/1860-1804/2007/0158-0869
Munoz H, Taheri A (2017) Local damage and progressive localisation in porous sandstone during cyclic loading. Rock Mech Rock Eng. doi:10.1007/s00603-017-1298-8
Nara Y, Kaneko K (2006) Sub-critical crack growth in anisotropic rock. Int J Rock Mech Min Sci 43(3):437–453. doi:10.1016/j.ijrmms.2005.07.008
Nara Y, Morimoto K, Hiroyoshi N, Yoneda T, Kaneko K, Benson P (2012) Influence of relative humidity on fracture toughness of rock: implications for subcritical crack growth. Int J Solids Struct 49(18):2471–2481. doi:10.1016/j.ijsolstr.2012.05.009
Nejati H, Ghazvinian A (2014) Brittleness effect on rock fatigue damage evolution. Rock Mech Rock Eng 47(5):1839–1848. doi:10.1007/s00603-013-0486-4
Ni XH (2014) Failure characteristic of granite under cyclic loading with different frequencies. Appl Mech Mater 638:1967–1970
Pola A, Crosta G, Fusi N, Castellanza R (2014) General characterization of the mechanical behaviour of different volcanic rocks with respect to alteration. Eng Geol 169:1–13. doi:10.1016/j.enggeo.2013.11.011
Pouya A, Zhu C, Arson C (2016) Micro-macro approach of salt viscous fatigue under cyclic loading. Mech Mater 93:13–31. doi:10.1016/j.mechmat.2015.10.009
Prikryl R, Lokajicek T, Li C, Rudajev V (2003) Acoustic emission characteristics and failure of uniaxially stressed granitic rocks: the effect of rock fabric. Rock Mech Rock Eng 36:255–270. doi:10.1007/s00603-003-0051-7
Pujades E, Willems T, Bodeux S, Orban P, Dassargues A (2016) Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow. Hydrogeol J. doi:10.1007/s10040-016-1413-z
Rajaram V (1981) Mechanical behavior of granite under cyclic compression. In: First international conference on recent advances in geotechnical earthquake engineering
Rao M, Ramana YV (1992) A study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniques. Rock Mech Rock Eng 25(4):237–251. doi:10.1007/BF01041806
Ritchie R (1999) Mechanisms of fatigue-crack propagation in ductile and brittle solids. Int J Fract 100:55–83. doi:10.1023/A:1018655917051
Royer-Carfagni G, Salvatore W (2000) The characterization of marble by cyclic compression loading: experimental results. Mech Cohes Frict Mater 5(7):535–563. doi:10.1002/1099-1484(200010)5:7<535::AID-CFM102>3.0.CO;2-D
Schaefer L, Kendrick J, Oommen T, Lavallée Y, Chigna G, Costa A (2015) Geomechanical rock properties of a basaltic volcano. Front Earth Sci 3(June):1–15
Schijve J (2003) Fatigue of structures and materials. Fatigue Struct Mater 25:679–702. doi:10.1007/978-1-4020-6808-9
Scholz C, Kranz R (1974) Notes on dilatancy recovery. J Geophys Res 79(14):2132–2135
Scholz CH, Koczynski TA (1979) Dilatancy anisotropy and the response of rock to large cyclic loads. J Geophys Res 84(B10):5525. doi:10.1029/JB084iB10p05525
Shao J, Zhou H, Chau KT (2005) Coupling between anisotropic damage and permeability variation in brittle rocks. Int J Numer Anal Methods Geomech 29(12):1231–1247. doi:10.1002/nag.457
Shreiner LA, Pavlova NN (1958) Experimental data on the fatigue breakdown of rocks. Trudy Instituta Nefti Akademii Nauk SSSR, vol 2, Neftepromyslovoe Delo. Associated Technical Services, East Orange, NJ, pp 46–52
Singh S (1989) Fatigue and strain hardening behaviour of graywacke from the flagstaff formation, New South Wales. Eng Geol 26(2):171–179
Sondergeld C, Estey L (1981) Acoustic emission study of microfracturing during the cyclic loading of Westerly granite. J Geophys Res 86(B4):2915–2924. doi:10.1029/JB086iB04p02915
Song H, Zhang H, Fu D, Zhang Q (2016) Experimental analysis and characterization of damage evolution in rock under cyclic loading. Int J Rock Mech Min Sci 88:157–164. doi:10.1016/j.ijrmms.2016.07.015
Song R, Yue-ming B, Jing-Peng Z, De-yi J, Chun-he Y (2013) Experimental investigation of the fatigue properties of salt rock. Int J Rock Mech Min Sci 64:68–72. doi:10.1016/j.ijrmms.2013.08.023
Sorgi C, De Gennaro V (2011) Water-rock interaction mechanisms and ageing processes in chalk. In: Chen D (ed) Advances in data, methods, models and their applications in geoscience. In Tech. doi:10.5772/1133
Steffen B (2012) Prospects for pumped-hydro storage in Germany. Energy Policy 45:420–429
Taheri A, Royle A, Yang Z, Zhao Y (2016) Study on variations of peak strength of a sandstone during cyclic loading. Geomech Geophys Geo-Energy Geo-Resour 2(1):1–10. doi:10.1007/s40948-015-0017-8
Tien Y, Lee D, Juang C (1990) Strain, pore pressure and fatigue characteristics of sandstone under various load conditions. Int J Rock Mech Min Sci Geomech Abstr 27(4):283–289
Tomkins B (1981) Subcritical crack growth: fatigue, creep and stress corrosion cracking. Philos Trans R Soc A Math Phys Eng Sci 299:31–44
Trippetta F, Collettini C, Meredith P, Vinciguerra S (2013) Tectonophysics evolution of the elastic moduli of seismogenic triassic evaporites subjected to cyclic stressing. Tectonophysics 592:67–79. doi:10.1016/j.tecto.2013.02.011
Voznesenskii A, Krasilov M, Kutkin Y, Tavostin M, Osipov Y (2017) Features of interrelations between acoustic quality factor and strength of rock salt during fatigue cyclic loadings. Int J Fatigue 97:70–78. doi:10.1016/j.ijfatigue.2016.12.027
Voznesenskii A, Kutkin Y, Krasilov M, Komissarov A (2015) Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor. Int J Fatigue 77(March):194–198. doi:10.1016/j.ijfatigue.2015.02.012
Voznesenskii A, Kutkin Y, Krasilov M, Komissarov A (2016) The influence of the stress state type and scale factor on the relationship between the acoustic quality factor and the residual strength of gypsum rocks in fatigue tests. Int J Fatigue 84:53–58. doi:10.1016/j.ijfatigue.2015.11.016
Wang H, Xu W, Cai M, Xiang Z, Kong Q (2017) Gas permeability and porosity evolution of a porous sandstone under repeated loading and unloading conditions. Rock Mech Rock Eng 50:2071–2083. doi:10.1007/s00603-017-1215-1
Wang W, Wang M, Liu X (2016) Study on mechanical features of Brazilian splitting fatigue tests of salt rock. Adv Civ Eng 2016:5436240. doi:10.1155/2016/5436240
Wang Z, Li S, Qiao L, Zhang Q (2015) Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation. Int J Rock Mech Min Sci 73:70–81. doi:10.1016/j.ijrmms.2014.09.018
Wang Z, Li S, Qiao L, Zhao J (2013) Fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. Rock Mech Rock Eng 46(6):1603–1615. doi:10.1007/s00603-013-0387-6
Widhalm C, Tschegg E, Eppensteiner W (1996) Anisotropic thermal expansion causes deformation of marble claddings. J Perform Constr Facil 10(February):5–10
Wiederhorn S (1967) Influence of water vapor on crack propagation in soda-lime glass. J Am Ceram Soc 50(8):407–414
Xiao J, Ding D, Jiang F, Xu G (2010a) Fatigue damage variable and evolution of rock subjected to cyclic loading. Int J Rock Mech Min Sci 47(3):461–468. doi:10.1016/j.ijrmms.2009.11.003
Xiao J, Ding D, Xu G, Jiang F (2009) Inverted S-shaped model for nonlinear fatigue damage of rock. Int J Rock Mech Min Sci 46(3):643–648. doi:10.1016/j.ijrmms.2008.11.002
Xiao J, Feng X, Ding D, Jiang F (2010b) Investigation and modeling on fatigue damage evolution of rock as a function of logarithmic cycle. Int J Numer Anal Meth Geomech 35:1127–1140. doi:10.1002/nag
Yamashita S, Sugimoto F, Imai T, Namsrai D, Yamauchi M, Kamoshida N (1999) The relationship between the failure process of the creep or fatigue test and of the conventional compression test on rock. In: 9th ISRM congress, international society for rock mechanics
Yang S, Tian W, Ranjith P (2017) Experimental investigation on deformation failure characteristics of crystalline marble under triaxial cyclic loading. Rock Mech Rock Eng. doi:10.1007/s00603-017-1262-7
Yang S-Q, Ranjith P, Huang Y-H, Yin P-F, Jing H-W, Gui Y-L, Yu Q-L (2015) Sandstone under triaxial cyclic loading. Geophys J Int 201:662–682. doi:10.1093/gji/ggv023
Zang A, Yoon J, Stephansson O, Heidbach O (2013) Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys J Int 195(August):1282–1287. doi:10.1093/gji/ggt301
Zhang P, Xu J, Li N (2008) Fatigue properties analysis of cracked rock based on fracture evolution process. J Cent South Univ 15:95–99. doi:10.1007/s1177100800196
Zhang S, Lai Y, Zhang X, Pu Y, Yu W (2004) Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze-thaw cycle condition. Tunn Undergr Space Technol 19(3):295–302. doi:10.1016/j.tust.2003.11.011
Zhang ZX, Kou SQ, Jiang LG, Lindqvist P-A (2000) Effects of loading rate on rock fracture characteristics and energy partitioning. Int J Rock Mech Min Sci 37:745–762
Zhao J (2000) Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Min Sci 37(7):1115–1121. doi:10.1016/S1365-1609(00)00049-6
Zhenyu T, Haihong M (1990) An experimental study and analysis of the behaviour of rock under cyclic loading. Int J Rock Mech Min Sci Geomech Abstr 27(1):51–56
Zhu Q, Kondo D, Shao J, Pensee V (2008) Micromechanical modelling of anisotropic damage in brittle rocks and application. Int J Rock Mech Min Sci 45(4):467–477. doi:10.1016/j.ijrmms.2007.07.014
Zhu W, Tang C (2006) Numerical simulation of Brazilian disk rock failure under static and dynamic loading. Int J Rock Mech Min Sci 43(2):236–252. doi:10.1016/j.ijrmms.2005.06.008
Zoback M, Byerlee J (1975) The effect of cyclic differential stress on dilatancy in westerly reduced repeated plied the is sub- on dilatancy in westerly granite. J Geophys Res 80(11):1526–1530
Acknowledgements
This work is supported by the Walloon Region (Belgium) through SMARTWATER project. The authors would like to gratefully acknowledge Pr. Imai for providing useful papers and references as well as Pr. Michael Heap for providing original figures and data.
Author information
Authors and Affiliations
Corresponding author
Appendix: List of Papers
Appendix: List of Papers
References | Material | Frequency, rate | Type | N max | Fatigue limit | Load signal |
---|---|---|---|---|---|---|
Grover et al. (1950) | Limestone | – | Uniaxial | – | 0.65 | Constant |
Shreiner and Pavlova (1958) | – | – | – | – | – | – |
Burdine (1963) | Sandstone | 15–50 Hz | Uniaxial, triaxial | 1 × 106 | 0.74 | Constant |
Haimson and Kim (1971) | Marbre | 2–4 Hz | Uniaxial | 1 × 106 | 0.75 | Constant |
Attewell and Farmer (1973) | Limestone | 0.3–20 Hz | Uniaxial | 4.1 × 104 | – | Constant |
Brown and Hudson (1974) | Gypsum plaster | 0.5–2 Hz | Uniaxial | 1.4 × 104 | – | Constant |
Scholz and Kranz (1974) | Granite | 1 × 10−5 /s | Uniaxial | 2 × 101 | – | Constant |
Rajaram (1981) | Westerly granite | 1 Hz | Uniaxial | 1 × 106 | 0.73 | Constant |
Singh (1989) | Sandstone | 1 Hz | Uniaxial | 1 × 104 | 0.87 | Constant |
Tien et al. (1990) | Sandstone | 0.1–1 Hz | Triaxial | 1 × 103 | – | Constant |
Zhenyu and Haihong (1990) | Sandstone, marble | 0.0019–0.005 Hz | Uniaxial | – | – | Constant, ramp |
Li et al. (1992) | Sandstone | 0.5 Hz | Brazilian | 3 × 104 | – | Constant |
Martin and Chandler (1994) | Granite | 0.75 Mpa/s | Uniaxial, triaxial | – | – | Damage |
Celestino et al. (1995) | Granite | 7 kN/min | Brazilian | 2.3 × 101 | – | Constant |
Eberhardt et al. (1999) | Granite | 0.25 MPa/s | Uniaxial | – | – | Damage |
Yamashita et al. (1999) | Tuff, sandstone, marble, granite | 1 Hz | Uniaxial | 1 × 106 | 0.55–0.80 | Constant |
Royer-Carfagni and Salvatore (2000) | Marble | 1–2 Mpa/s | Uniaxial | 1.8 × 102 | – | Constant |
Cattaneo and Labuz (2001) | Marble | – | Flexion | – | – | Damage |
Lavrov (2001 | Limestone | – | Uniaxial, Brazilian | – | – | Damage |
Gatelier et al. (2002) | Sandstone | 0.025–0.2 Hz | Uniaxial, triaxial | – | – | Damage |
Li et al. (2003) | Sandstone | 2–20 Hz | Uniaxial | – | – | Damage |
Åkesson et al. (2004) | Granite | 4 Hz | Uniaxial | 3.5 × 104 | 0.6 | Constant |
Ko (2005) | Gypsum | 0.5 Hz | Uniaxial | 4 × 103 | – | Constant |
Bagde and Petroš (2005a) | Sandstone | 0.1–1–10 Hz | Uniaxial | – | – | Ramp |
Zhang et al. (2008) | Reconstituted | 0.02, 2, 1 Hz | Uniaxial | – | – | Constant |
Heap and Faulkner (2008) | Granite | 2.5 MPa/min | Uniaxial | – | – | Damage |
Mitchell and Faulkner (2008) | Granite, granodiorite | 3.3 × 10−4 Hz | Triaxial | 1 × 101 | – | Constant |
Xiao et al. (2009) | Granite | 0.2 Hz | Uniaxial | – | – | Constant |
Heap et al. (2009) | Basalt | – | Uniaxial | – | – | Damage |
Heap et al. (2010) | Basalt, sandstone, granite | 7 × 10−6 s−1 | Triaxial | – | – | Damage |
Xiao et al. (2010) | Granite | 0.2 Hz | Uniaxial | 3 × 103 | – | Constant |
Xiao et al. (2010) | Granite | 0.2 Hz | Uniaxial | 1 × 103 | – | Constant |
Fuenkajorn and Phueakphum (2010) | Salt | 0.001–0.03 Hz | Triaxial | 1 × 103 | – | Constant |
Erarslan and Williams (2012b) | Tuff | 1 Hz | Brazilian | 1 × 105 | 0.7 | Constant, ramp |
Erarslan and Williams (2012a) | Brisbane | 1 Hz | Brazilian | 2.9 × 103 | – | Ramp |
Liu and He (2012) | Sandstone | 1 Hz | Triaxial | 6.2 × 102 | – | Constant |
Guo et al. (2012) | Salt | 1 Hz | Uniaxial | 1.5 × 104 | 0.75 | Constant |
David et al. (2012) | Sandstone, granite | 2 × 10−6 s−1 | Uniaxial | – | – | Damage |
Wang et al. (2013) | Granite | 50 N/s | Triaxial | – | – | Damage |
Ma et al. (2013) | Salt | 0.025 –0.1 Hz | Triaxial | 8.5 × 102 | – | Constant |
Song et al. (2013) | Salt | 0.36–10 kN/s | Uniaxial | 6 × 102 | – | Constant |
Trippetta et al. (2013) | Evaporites | 7 × 10−6 s−1 | Uniaxial | – | – | Damage |
Faoro et al. (2013) | Granite, basalt | 5 × 10−6 m/s | Triaxial | – | – | Damage |
Kendrick et al. (2013) | Volcanic | 1 × 10−5 s−1 | Uniaxial | – | – | Damage |
Bastian et al. (2014) | Sandstone | 1–6 mm/min | Uniaxial, triaxial | 1 × 102 | – | Constant |
Erarslan et al. (2014) | Tuff | – | Brazilian | \(8\times 10^5\) | 0.68 | Constant, ramp |
Nejati and Ghazvinian (2014) | Marble, sandstone, limestone | 1 Hz | Brazilian | \(3\times 10^3\) | 0.6/0.7/0.8 | Constant |
Le et al. (2014) | Sandstone | 1 Hz | Flexion | \(5.5 \times 10^3\) | – | Constant |
Liu et al. (2014) | Salt | 1 Hz | Uniaxial | – | – | Damage |
Pola et al. (2014) | Lava, pyroclastic, tuff, ignimbrite | 4 mm/h | Uniaxial | – | – | Damage |
Ni (2014) | Granite | 0.01–1 Hz | Uniaxial | – | – | Constant |
Momeni et al. (2015) | Granite | 0.1–5 Hz | Uniaxial | \(2.4\times 10^3\) | – | Constant |
Voznesenskii et al. (2015) | Limestone, gabbro, marble | – | Uniaxial | 200 | – | Constant |
Yang et al. (2015) | Sandstone | 0.08 mm/min | Triaxial | – | – | Damage |
Schaefer et al. (2015) | Basalt | \(10^{-5}\) s\(^{-1}\) | Uniaxial | – | – | Damage |
Voznesenskii et al. (2016) | Gypsum | – | Uniaxial | \(1\times 10^2\) | – | Constant |
Taheri et al. (2016) | Sandstone | 0.5 mm/min | Triaxial | \(2.2\times 10^3\) | – | Constant, damage |
Ghamgosar and Erarslan (2016) | Tuff | 1–5 Hz | Brazilian | – | – | Ramp, damage |
Erarslan (2016) | Tuff | – | Brazilian | – | – | Constant, ramp |
Wang et al. (2016) | Salt | 0.05 kN/s | Brazilian | \(5.2 \times 10^3\) | – | Damage |
Fan et al. (2016) | Salt | 2 kN/s | Uniaxial | \(9 \times 10^1\) | – | Interval |
Jiang et al. (2016) | Salt | 2 kN/s | Uniaxial | \(6 \times 10^1\) | – | Interval |
Song et al. (2016) | Sandstone | 0.12 mm/min | Uniaxial | – | – | Damage |
Meng et al. (2016) | Sandstone | 0.5–4 kN/s | Uniaxial | – | – | Damage |
Karakus et al. (2016) | Sandstone | – | Uniaxial | \(1\times 10^4\) | – | Constant |
Fan et al. (2017) | Salt | 2 kN/s | Uniaxial | \(9 \times 10^1\) | – | Interval |
Jobli et al. (2017) | Granite | 1 Hz | Uniaxial | \(1\times 10^2\) | – | Constant |
Yang et al. (2017) | Marble | 0.02 mm/s | Triaxial | – | – | Damage |
Wang et al. (2017) | Sandstone | – | Triaxial | – | – | Damage |
Ghamgosar et al. (2017) | Tuff/monzonite | 1, 5 Hz | Brazilian | – | – | Ramp |
Voznesenskii et al. (2017) | Salt | 0.0001–2 mm/min | Uniaxial | \(\times 10^2\) | – | Constant |
Liu et al. (2017) | Sandstone | 1 Hz | Brazilian | \(8.5 \times 10^2\) | – | Constant |
Liu et al. (2017) | Artificial | 0.01–20 Hz | Uniaxial | \(1.2\times 10^3\) | – | Constant |
Jamali Zavareh et al. (2017) | Gabbro, onyx, limestone | 5 Hz | Bending | \(>1\times 10^6\) | 0.4–0.6 | Constant |
Munoz and Taheri (2017) | Sandstone | \(0.18 \times 10^{-4}\) s\(^{-1}\) | Uniaxial | – | – | Damage |
Rights and permissions
About this article
Cite this article
Cerfontaine, B., Collin, F. Cyclic and Fatigue Behaviour of Rock Materials: Review, Interpretation and Research Perspectives. Rock Mech Rock Eng 51, 391–414 (2018). https://doi.org/10.1007/s00603-017-1337-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00603-017-1337-5