Skip to main content
Log in

An Analytical Method for Determining the Convection Heat Transfer Coefficient Between Flowing Fluid and Rock Fracture Walls

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The convective heat transfer coefficient (HTC) is a useful indicator that characterizes the convective heat transfer properties between flowing fluid and hot dry rock. An analytical method is developed to explore a more realistic formula for the HTC. First, a heat transfer model is described that can be used to determine the general expression of the HTC. As one of the novel elements, the new model can consider an arbitrary function of temperature distribution on the fracture wall along the direction of the rock radius. The resulting Dirichlet problem of the Laplace equation on a semi-disk is successfully solved with the Green’s function method. Four specific formulas for the HTC are derived and compared by assuming the temperature distributions along the radius of the fracture wall to be zeroth-, first-, second-, and third-order polynomials. Comparative verification of the four specific formulas based on the test data shows that the formula A corresponding to the zeroth-order polynomial always predicts stable HTC values. At low flow rates, the four formulas predict similar values of HTC, but at higher flow rates, formulas B and D, respectively, corresponding to the first- and third-order polynomials, predict either too large or too small values of the HTC, while formula C, corresponding to the second-order polynomial, predicts relatively acceptable HTC values. However, we cannot tell which one is the more rational formula between formulas A and C due to the limited information measured. One of the clear advantages of formula C is that it can avoid the drawbacks of the discontinuity of temperature and the singular integral of HTC at the points (±R, 0). Further experimental work to measure the actual temperature distribution of water in the fracture will be of great value. It is also found that the absorbed heat of the fluid, Q, has a significant impact on the prediction results of the HTC. The temperatures at the inlet and the outlet used for Q should be consistent with the assumptions adopted in the derivation of its corresponding HTC formula. A mismatched value of Q might be the reason that some existing HTC formulas predict negative or extremely large HTCs at high flow rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

T i (x):

Inner surface temperature distribution of the rock sample (K)

T w (x):

Temperature distribution of the fracture water (K)

T w1 (x):

Temperature distribution at the fracture inlet

T w2 (x):

Temperature distribution at the fracture outlet

T i0 :

Inner surface temperature at the center of the rock sample (K)

T 1 :

The temperature of water at the fracture inlet (K)

T 2 :

The temperature of water at the fracture outlet (K)

L :

Length of the rock sample (m)

k :

Thermal conductivity of rock (W/(m K))

δ :

Width of aperture (m)

HTC:

Heat transfer coefficient

n :

The order of polynomial

f 1 (x):

The boundary condition at L 2[−R, 0], in “Appendix

f 2 (x):

The boundary condition at L 3[0, R], in “Appendix

h :

Heat transfer coefficient (W/(m2 K))

R :

Radius of the rock specimen (m)

Q :

Heat quantity transferred to the water (J)

T c :

The temperature at the outer wall surface of specimen, i.e., the oil temperature (K)

C p :

Specific heat capacity at constant pressure (J/(kg K))

ρ :

Density of water (kg/m3)

u :

Flow velocity (m/s)

G :

Green’s function

x :

Horizontal coordinate

y :

Vertical coordinate

u (x, y):

Solution to Dirichlet problem of Laplace equation on a semi-disk, in “Appendix

b, b w1, b w2 :

Coefficients in polynomial

Z + :

The set of positive integers

References

  • Asmar NH (2005) Partial Differential equations with fourier series and boundary value problems, 2nd edn. ISBN:0-13-148096-0

  • Bai B, He Y, Li X, Hu S (2016) Local heat transfer characteristics of water flowing through a single fracture within a cylindrical granite specimen. Environ Earth Sci 75:1460. doi:10.1007/s12665-016-6249-2

    Article  Google Scholar 

  • Bai B, He Y, Li X, Li J, Huang X, Zhu J (2017) Experimental and analytical study of the overall heat transfer coefficient of water flowing through a single fracture in a granite core. Appl Therm Eng 116:79–90

    Article  Google Scholar 

  • Huang X, Zhu J, Li J, Bai B, Zhang G (2016) Fluid friction and heat transfer through a single rough fracture in granitic rock under confining pressure. Int Commun Heat Mass Transf 1(1):111–123

    Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials part 2: suggested Method for determining indirect tensile strength by the Brazil Test. Int J Rock Mech Min Sci 15:99–103

    Article  Google Scholar 

  • Lu W, Xiang YY (2012) Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow. J Zhejiang Univ Sci A 13(12):958–968

    Article  Google Scholar 

  • Mohais R, Xu C, Dowd PA (2011) Fluid flow and heat transfer within a single horizontal fracture in an enhanced geothermal system. ASME J Heat Transf 133:112603-1–112603-8

    Article  Google Scholar 

  • Ogino F, Yamamura M, Fukuda T (1999) Heat transfer from hot dry rock to water flowing through a circular fracture. Geothermics 28(1):21–44

    Article  Google Scholar 

  • Xu RN, Zhang L, Zhang FZ, Jiang PX (2015) A review on heat transfer and energy conversion in the enhanced geothermal systems with water/CO2 as working fluid. Int J Energy Res 39(13):1722–1741

    Article  Google Scholar 

  • Zhang G, Zhu J, Li J, Wan Q (2015) The analytical solution of the water-rock heat transfer coefficient and sensitivity analyses of parameters. Proceedings World Geothermal Congress, Melbourne, Australia

    Google Scholar 

  • Zhao J (1987) Experimental studies of the hydro-thermo-mechanical behavior of joints in granite. Imperial College, London

    Google Scholar 

  • Zhao J (1992) Analytical and experimental studies of heat convection by water flow in rock fractures. In: Tillerson JRWW (ed) Proceeding of 33rd US Symposium on Rock Mechanics. Balkema, Rotterdam

    Google Scholar 

  • Zhao J (1999) Experimental study of flow-rock heat transfer in rock fractures. Chin J Rock Mech Eng 18(02):1–5

    Google Scholar 

  • Zhao ZH (2014) On the heat transfer coefficient between rock fracture walls and flowing fluid. Comput Geotech 59:105–111

    Article  Google Scholar 

  • Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the carnmenellis granite. Q J Eng Geol 25(4):279–290

    Article  Google Scholar 

  • Zhao J, Tso CP (1993) Heat-transfer by water-flow in rock fractures and the application to hot dry rock geothermal systems. Int J Rock Mech Min Sci Geomech Abstr 30(6):633–641

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of this work by the National Natural Science Foundation of China (Grant No. 41672252). Thanks a lot for the help by Prof. Guji Tian from the Institute of Physics and Mathematics of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Bai.

Appendix: Solution to Dirichlet Problem of Laplace Equation on a Semi-disk

Appendix: Solution to Dirichlet Problem of Laplace Equation on a Semi-disk

1.1 Green Function for Semi-disk in a Plane

The Dirichlet problem of Laplace equation on a semi-disk reads,

$$ \left\{ {\begin{array}{*{20}l} {\Delta u = 0\quad {\text{in}}\;\varOmega \, } \hfill \\ {u = \left\{ {\begin{array}{*{20}l} {u_{c} } \hfill & {{\text{on}}\;L_{1} } \hfill \\ {f_{1} (x)} \hfill & {{\text{on}}\;L_{2} } \hfill \\ {f_{2} (x) \, } \hfill & {{\text{on}}\;L_{3} } \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right. $$

The materials below originated from Chapter 12 (Asmar 2005). We would like to apply the so-called method of images, which uses basic facts from plane geometry about the circle and reflection, to derive the Green functions. Generally, the Green’s function for \( \varOmega \subset R^{2} \) is of the form,

$$ G\left( {x,y,x_{0} ,y_{0} } \right) = \frac{1}{2}\ln \left( {\left( {x - x_{0} } \right)^{2} + \left( {y - y_{0} } \right)^{2} + h\left( {x,y,x_{0} ,y_{0} } \right)} \right) $$
(25)

where h satisfies

$$ \left\{ {\begin{array}{*{20}l} {\Delta \nu = 0} \hfill & {{\text{in}}\;\varOmega } \hfill \\ {\nu = - \frac{1}{2}\ln \left( {\left( {x - x_{0} } \right)^{2} + \left( {y - y_{0} } \right)^{2} } \right)} \hfill & {{\text{on}}\;\partial \varOmega } \hfill \\ \end{array} } \right. $$
(26)

and then

$$ G\left( {x,y,x_{0} ,y_{0} } \right) = 0,\quad {\text{on}}\;\partial \varOmega $$
(27)

Now we introduce a well-known transformation called the Steiner inversion, see Section 12.4 (Asmar 2005). When A is not the origin, the point A* is the inverse of the point A through the circle {(x, y\( \in \) R 2: |x|2 + |y|2 = R 2}. By definition of the Steiner inversion, A* is the point on the ray from the origin O through A at a distance such that \( OA \cdot OA^{*} = R^{2} \).

In particular, if A = (x 0,y 0) ∈ {(x, y\( \in \) R 2: |x|2 + |y|2 ≤ R 2}, then

$$ \left( {x_{0}^{*} ,y_{0}^{*} } \right) = \frac{{R^{2} }}{{\left| {x_{0} ,y_{0} } \right|^{2} }}\left( {x_{0} ,y_{0} } \right) = \frac{{R^{2} }}{{\left| {x_{0} } \right|^{2} + \left| {y_{0} } \right|^{2} }}\left( {x_{0} ,y_{0} } \right) $$
(28)

Let

$$ G_{1} \left( {x,y,x_{0} ,y_{0} } \right) = \frac{1}{2}\ln \left[ {\frac{{\left( {x - x_{0} } \right)^{2} + \left( {y - y_{0} } \right)^{2} }}{{\left( {x - x_{0}^{*} } \right)^{2} + \left( {y - y_{0}^{*} } \right)^{2} }}} \right] - \frac{{\ln \sqrt {x_{0}^{2} + y_{0}^{2} } }}{R} $$
(29)

Then

$$ G_{1} \left( {x,y,x_{0} ,y_{0} } \right),\quad {\text{on}}\,L_{1} = \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} = R^{2} ,y > 0} \right\} $$
(30)

The reflection of \( \left( {x_{0} ,y_{0} } \right) \) about x-axis (y = 0) is \( \left( {x_{0} , - y_{0} } \right), \) let

$$ \begin{aligned} & G\left( {x,y,x_{0} ,y_{0} } \right) = G_{1} \left( {x,y,x_{0} ,y_{0} } \right) - G_{1} \left( {x,y,x_{0} , - y_{0} } \right) \\ & \quad = \frac{1}{2}\ln \left[ {\frac{{\left( {x - x_{0} } \right)^{2} + \left( {y - y_{0} } \right)^{2} }}{{\left( {x - x_{0}^{*} } \right)^{2} + \left( {y - y_{0}^{*} } \right)^{2} }}} \right] - \frac{1}{2}\ln \left[ {\frac{{\left( {x - x_{0} } \right)^{2} + \left( {y + y_{0} } \right)^{2} }}{{\left( {x - x_{0}^{*} } \right)^{2} + \left( {y + y_{0}^{*} } \right)^{2} }}} \right] \\ \end{aligned} $$
(31)

then

$$ \left. {G\left( {x,y,x_{0} ,y_{0} } \right)} \right|_{y = 0}\,=\,0 $$

which, by virtue of (29), implies

$$ G\left( {x,y,x_{0} ,y_{0} } \right) = 0,\quad {\text{on}}\; \partial \varOmega $$
(32)

with \( \varOmega = \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} < R^{2} ,y > 0} \right\}, \) and therefore \( G\left( {x,y,x_{0} ,y_{0} } \right) \) is the unique Green’s function determined by the region \( \varOmega \). The uniqueness of Green’s function is from Theorem 3, Section 12.3, in the work by Asmar (2005).

We separate the boundary of \( \varOmega \) into two parts: One is a semicircle \( \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} = R^{2} ,y > 0} \right\}, \) and the other is \( \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} \le R^{2} ,y = 0} \right\}. \) When we deal with the problem in a semicircle, it is convenient to express Green’s function in polar coordinates. Let

$$ \left\{ {\begin{array}{*{20}l} {A = \left( {x_{0} ,y_{0} } \right) = \left( {r_{0} \cos \phi ,\sin \phi } \right)} \hfill \\ {A^{*} = \left( {\frac{{R^{2} }}{{r_{0} }}\cos \phi ,\frac{{R^{2} }}{{r_{0} }}\sin \phi } \right)} \hfill \\ {P = \left( {r\cos \theta ,r\sin \theta } \right)} \hfill \\ \end{array} } \right. $$
(33)

By (29)

$$ G_{1} \left( {x,y,x_{0} ,y_{0} } \right) = G_{1} \left( {r,\theta ,r_{0} ,\phi } \right) = \frac{1}{2}{ \ln }\left[ {R^{2} \frac{{r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\theta - \phi } \right)}}{{r^{2} r_{0}^{2} + R^{4} - 2rr_{0} R^{2} \cos \left( {\theta - \phi } \right)}}} \right] $$

Similarly

$$ G_{1} \left( {x,y,x_{0} , - y_{0} } \right) = G_{1} \left( {r,\theta ,r_{0} , - \phi } \right) = \frac{1}{2}\ln \left[ {R^{2} \frac{{r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\theta + \phi } \right)}}{{r^{2} r_{0}^{2} + R^{4} - 2rr_{0} R^{2} \cos \left( {\theta + \phi } \right)}}} \right] $$

Therefore

$$ \begin{aligned} G\left( {r,\theta ,r_{0} ,\phi } \right) & = G_{1} \left( {r,\theta ,r_{0} ,\phi } \right) - G_{1} \left( {r,\theta ,r_{0} , - \phi } \right) \\ & = \frac{1}{2}\ln \left[ {\frac{{r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\theta - \phi } \right)}}{{r^{2} r_{0}^{2} + R^{4} - 2rr_{0} R^{2} \cos \left( {\theta - \phi } \right)}}} \right] - \frac{1}{2}\ln \left[ {\frac{{r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\theta + \phi } \right)}}{{r^{2} r_{0}^{2} + R^{4} - 2rr_{0} R^{2} \cos \left( {\theta + \phi } \right)}}} \right] \\ \end{aligned} $$
(34)

Now we turn to the case \( \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right| \le R,y = 0} \right\}, \) and it follows from (28) that

$$ \left\{ {\begin{array}{*{20}l} {\left( {x - x_{0}^{*} } \right)^{2} + \left( {y - y_{0}^{*} } \right)^{2} = \frac{{\left[ {x\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} - R^{2} x_{0} } \right]^{2} }}{{\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} }} + \frac{{\left[ {y\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} - R^{2} y_{0} } \right]^{2} }}{{\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} }}} \hfill \\ {\left( {x - x_{0}^{*} } \right)^{2} + \left( {y + y_{0}^{*} } \right)^{2} = \frac{{\left[ {x\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} - R^{2} x_{0} } \right]^{2} }}{{\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} }} + \frac{{\left[ {y\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} + R^{2} y_{0} } \right]^{2} }}{{\left( {x_{0}^{2} + y_{0}^{2} } \right)^{2} }}} \hfill \\ \end{array} } \right. $$

Inserting the equalities above into (31), we have

$$ \begin{aligned} G\left( {x,y,x_{0} ,y_{0} } \right) & = \frac{1}{2}\ln \left[ {\frac{{\left( {x - x_{0} } \right)^{2} + \left( {y - y_{0} } \right)^{2} }}{{\left[ {x\left( {x_{0}^{2} + y_{0}^{2} } \right) - R^{2} x_{0} } \right]^{2} + \left[ {y\left( {x_{0}^{2} + y_{0}^{2} } \right) - R^{2} y_{0} } \right]^{2} }}} \right] \\ & \quad - \frac{1}{2}{ \ln }\left[ {\frac{{\left( {x - x_{0} } \right)^{2} + \left( {y + y_{0} } \right)^{2} }}{{\left[ {x\left( {x_{0}^{2} + y_{0}^{2} } \right) - R^{2} x_{0} } \right]^{2} + \left[ {y\left( {x_{0}^{2} + y_{0}^{2} } \right) + R^{2} y_{0} } \right]^{2} }}} \right]. \\ \end{aligned} $$
(35)

1.2 Analytical Solution for Arbitrary Boundary Functions

We restate Theorem 2, Section 12.3 (Asmar 2005), as follows.

Theorem 1

Suppose that u is harmonic in \( \varOmega \) and continuous on its boundary \( \varGamma \) . Then for \( \left( {x,y} \right) \in \varOmega \), we have

$$ u\left( {x,y} \right) = \frac{1}{2\pi }\int_{\varGamma } {u\left( {x_{0} ,y_{0} ,x,y} \right)} \frac{\partial G}{\partial n}\left( {x_{0} ,y_{0} ,x,y} \right){\text{d}}s\left( {x_{0} ,y_{0} } \right) $$
(36)

where G is the Green’s function for \( \varOmega . \)

Here we can have a different version from the original one of Asmar (2005) because the fact \( G\left( {x,y,x_{0} ,y_{0} } \right) = G\left( {x_{0} ,y_{0} ,x,y} \right) \) is employed. In general, if we write \( u\left( {x,y} \right) = u\left( {r_{0} \cos \phi ,r_{0} \sin \phi } \right), \) the outward normal vector \( n = \left( {\cos \phi ,\sin \phi } \right) \) on the circle \( \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} = R^{2} } \right\} \). Therefore

$$ \frac{\partial u}{\partial n} \equiv \left( {u_{x} ,u_{y} } \right) \cdot n = u_{x} \cos \phi + u_{y} \sin \phi = \frac{\partial }{{\partial r_{0} }}\left[ {u\left( {r_{0} \cos \phi ,r_{0} \sin \phi } \right)} \right] $$

Now we calculate \( \frac{\partial u}{\partial n}\left( {x_{0} ,y_{0} ,x,y} \right) \) on the circle \( \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} = R^{2} } \right\} \) as

$$ \frac{\partial u}{\partial n}\left( {x_{0} ,y_{0} ,x,y} \right){\text{d}}s\left( {x_{0} ,y_{0} } \right) = \frac{\partial }{{\partial r_{0} }}\left[ {G\left( {r,\theta ,r_{0} ,\phi } \right)} \right]|_{{r_{0} = R}} R{\text{d}}\phi $$

where \( {\text{d}}s = R{\text{d}}\phi \) is used.

Calculations show that

$$ \frac{1}{2}\frac{\partial }{{\partial r_{0} }}\ln \left[ {R^{2} \frac{{r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\theta - \phi } \right)}}{{r^{2} r_{0}^{2} + R^{4} - 2rr_{0} R^{2} \cos \left( {\theta - \phi } \right)}}} \right]|_{{r_{0} = R}} = \frac{1}{R}\frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta - \phi } \right)}} $$

and similarly

$$ \frac{1}{2}\frac{\partial }{{\partial r_{0} }}\ln \left[ {R^{2} \frac{{r^{2} + r_{0}^{2} - 2rr_{0} \cos \left( {\theta + \phi } \right)}}{{r^{2} r_{0}^{2} + R^{4} - 2rr_{0} R^{2} \cos \left( {\theta + \phi } \right)}}} \right]|_{{r_{0} = R}} = \frac{1}{R}\frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta + \phi } \right)}} $$

By Theorem 1, we have

$$ \begin{aligned} & \int_{{\left| {x_{0} } \right|^{2} + \left| {y_{0} } \right|^{2} = R^{2} ,y > 0}} {u\left( {x_{0} ,y_{0} } \right)} \frac{\partial G}{\partial n}\left( {x_{0} ,y_{0} ,x,y} \right){\text{d}}s\left( {x_{0} ,y_{0} } \right) \\ & \quad = \int_{0}^{\pi } {u\left( \phi \right)} \left[ {\frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta - \phi } \right)}} - \frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta + \phi } \right)}}} \right]{\text{d}}\phi \\ \end{aligned} $$
(37)

Because \( 0 \le \theta ,\phi \le \pi , \) we see that

$$ \frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta - \phi } \right)}} - \frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta + \phi } \right)}} \ge 0 $$
(38)

Since the outward normal vector on \( \left\{ {\left( {x,y} \right) \in R^{2} :\;\left| x \right|^{2} + \left| y \right|^{2} \le R^{2} ,y = 0} \right\} \) is \( \left( {0, - 1} \right), \) then

$$ \frac{\partial G}{\partial n}|_{{y_{0} = 0}} = - \frac{\partial G}{{\partial y_{0} }}|_{{y_{0} = 0}} $$

and calculation shows by (35) that

$$ \frac{\partial G}{\partial n}|_{{y_{0} = 0}} = - \frac{\partial G}{{\partial y_{0} }}|_{{y_{0} = 0}} = \frac{2y}{{\left( {x - x_{0} } \right)^{2} + y^{2} }} - \frac{{2yR^{2} }}{{\left( {xx_{0} - R^{2} } \right)^{2} + \left( {yx_{0} } \right)^{2} }} $$

Notice that

$$ R^{2} - 2xx_{0} + \left( {x^{2} + y^{2} } \right)\frac{{x_{0}^{2} }}{{R^{2} }} - \left[ {x_{0}^{2} - 2xx_{0} + \left( {x^{2} + y^{2} } \right)} \right] = \left( {R^{2} - x_{0}^{2} } \right)\left( {1 - \frac{{x^{2} + y^{2} }}{{R^{2} }}} \right) \ge 0 $$

We see that

$$ \frac{\partial G}{\partial n}|_{{y_{0} = 0}} \ge 0 $$

which, together with (38), yields

$$ \frac{\partial G}{\partial n}|_{\partial \varOmega } \ge 0 $$

and, from (36)

$$ u\left( {x,y} \right) \ge 0 \quad {\text{if}}\; u|_{\partial \varOmega } \ge 0 $$

By Theorem 1, we have

$$ \begin{aligned} & \int_{{\left\{ {\left| {x_{0} } \right|^{2} + \left| {y_{0} } \right|^{2} = R^{2} ,y = 0} \right\}}} {u\left( {x_{0} ,y_{0} } \right)} \frac{\partial G}{\partial n}\left( {x_{0} ,y_{0} ,x,y} \right){\text{d}}s\left( {x_{0} ,y_{0} } \right) \\ & \quad = \int_{ - R}^{0} {f_{1} \left( x \right)} \left[ {\frac{2y}{{\left( {x - x_{0} } \right)^{2} + y^{2} }} - \frac{{2yR^{2} }}{{\left( {xx_{0} - R^{2} } \right)^{2} + \left( {yx_{0} } \right)^{2} }}} \right]{\text{d}}x_{0} \\ & \quad \quad+ \int_{0}^{R} {f_{2} \left( x \right)} \left[ {\frac{2y}{{\left( {x - x_{0} } \right)^{2} + y^{2} }} - \frac{{2yR^{2} }}{{\left( {xx_{0} - R^{2} } \right)^{2} + \left( {yx_{0} } \right)^{2} }}} \right]{\text{d}}x_{0} \\ \end{aligned} $$
(39)

From (36), (37), and (39), we have the explicit solution to the Dirichlet problem of Laplace equation on a semi-disk in plane

$$ \begin{aligned} u\left( {x,y} \right) & = \frac{1}{2\pi }\int_{0}^{\pi } {u\left( \phi \right)} \left[ {\frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta - \phi } \right)}} - \frac{{R^{2} - r^{2} }}{{r^{2} + R^{2} - 2rR\cos \left( {\theta + \phi } \right)}}} \right]{\text{d}}\phi \\ & \quad + \int_{ - R}^{0} {f_{1} \left( x \right)} \left[ {\frac{2y}{{\left( {x - x_{0} } \right)^{2} + y^{2} }} - \frac{{2yR^{2} }}{{\left( {xx_{0} - R^{2} } \right)^{2} + \left( {yx_{0} } \right)^{2} }}} \right]{\text{d}}x_{0} \\ & \quad + \int_{0}^{R} {f_{2} \left( x \right)} \left[ {\frac{2y}{{\left( {x - x_{0} } \right)^{2} + y^{2} }} - \frac{{2yR^{2} }}{{\left( {xx_{0} - R^{2} } \right)^{2} + \left( {yx_{0} } \right)^{2} }}} \right]{\text{d}}x_{0} . \\ \end{aligned} $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, B., He, Y., Hu, S. et al. An Analytical Method for Determining the Convection Heat Transfer Coefficient Between Flowing Fluid and Rock Fracture Walls. Rock Mech Rock Eng 50, 1787–1799 (2017). https://doi.org/10.1007/s00603-017-1202-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1202-6

Keywords

Navigation