Skip to main content
Log in

Correlating the Mechanical and Physical Properties with Mode-I Fracture Toughness of Rocks

  • Technical Note
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

K IC :

Mode-I fracture toughness

UCS:

Uniaxial compressive strength

σ t :

Tensile strength

Vp:

P-wave velocity

Vs:

S-wave velocity

ρ :

Rock density

l:

Fracture process zone (FPZ) length

References

  • Al-Shayea N, Khan K, Abduljauwad S (2000) Effects of confining pressure and temperature on mixed-mode (I-II) fracture toughness of a limestone rock. Int J Rock Mech Min 37(4):629–643. doi:10.1016/S1365-1609(00)00003-4

    Article  Google Scholar 

  • Ayman T (2010) Hard rocks under high strain-rate loading. Ph.D. thesis, Queen’s university, Ontario, Canada

  • Backers T, Fardin N, Dresen G, Stephansson O (2003) Effect of loading rate on Mode I fracture toughness, roughness and micromechanics of sandstone. Int J Rock Mech Min Sci 40(3):425–433. doi:10.1016/S1365-1609(03)00015-7

    Article  Google Scholar 

  • Bearman R (1991) The application of rock mechanics parameters to the prediction of crusher performance. Ph.D. thesis, Camborne School of Mines, University of Exeter, UK

  • Brown G, Reddish D (1997) Experimental relations between rock fracture toughness and density. Int J Rock Mech Min 34(1):153–155

    Article  Google Scholar 

  • Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture toughness under mode I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66(1–2):79–97. doi:10.1016/S0013-7952(02)00033-9

    Article  Google Scholar 

  • Cho SH, Mohanty B, Nakamura Y, Ogata Y, Kitayama H, Kaneko K (2007) Fracture processes of rocks in dynamic tensile-splitting test. In: Proceedings of the 1st Canada-US Rock Mechanics Symposium 639–645, Vancouver, Canada. doi: 10.1201/NOE0415444019-c78

  • Fowell R (1995) Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens. Int J Rock Mech Min 32(1):57–64. doi:10.1016/0148-9062(94)00015-U

    Article  Google Scholar 

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J Rock Mech Min 41(6):927–938. doi:10.1016/j.ijrmms.2004.02.008

    Article  Google Scholar 

  • Guha Roy D, Singh TN, Kodikara J (2016) Correlating fracture properties of saturated sedimentary rocks with compressive strength. Proc. Of 9th Asian Rock mechanics Symposium (ARMS9), Bali, Indonesia. Paper ID: ARMS9-PO6-P108

  • Haberfield C, Johnston I (1989) Relationship between fracture toughness and tensile strength for geomaterials. Proc of the 12th International Conference on Soil Mechanics and Foundation Engineering, SMFE 47–52, Rio De Janeiro, Brazil

  • Haimson B, Chang C (2000) A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min 37(1–2):285–296. doi:10.1016/S1365-1609(99)00106-9

    Article  Google Scholar 

  • Harison J, Hardin B, Mahboub K (1994) Fracture toughness of compacted cohesive soills using ring test. J Geotech Eng ASCE 120(5):872–891. doi:10.1061/(ASCE)0733-9410(1994)120:5(872)

    Article  Google Scholar 

  • Heuze F (1983) High-temperature mechanical, physical and thermal properties of granitic rocks—a review. Int J Rock Mech Min 20(1):3–10. doi:10.1016/0148-9062(83)91609-1

    Article  Google Scholar 

  • Kahraman S, Altindag R (2004) A brittleness index to estimate fracture toughness. Int J Rock Mech Min 41(2):343–348. doi:10.1016/j.ijrmms.2003.07.010

    Article  Google Scholar 

  • Kataoka M, Obara Y, Kuruppu M (2015) Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure. Rock Mech Rock Eng 48(4):1353–1367. doi:10.1007/s00603-014-0665-y

    Article  Google Scholar 

  • Khan K, Al-Shayea N (2000) Effect of specimen geometry and testing method on mixed-mode I-II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206. doi:10.1007/s006030070006

    Article  Google Scholar 

  • Kuruppu M, Obara Y, Ayatollahi M, Chong K, Funatsu T (2014) ISRM-suggested method for determining the mode-I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47(1):267–274. doi:10.1007/s00603-013-0422-7

    Article  Google Scholar 

  • Kwasniewski M, Li X, Takahasi M (2012) True triaxial testing of rocks. ISBN 9780415687232—CAT# K13759, CRC Press

  • Mahanta B, Singh T, Ranjith P (2016) Influence of thermal treatment on mode I fracture toughness of certain Indian rocks. Eng Geol 210:103–114. doi:10.1016/j.enggeo.2016.06.008

    Article  Google Scholar 

  • Nara Y, Morimoto K, Hiroyoshi N, Yoneda T, Kaneko K, Benson PM (2012) Influence of relative humidity on fracture toughness of rock: implications. Int J Solids Struct 49:2471–2481. doi:10.1016/j.ijsolstr.2012.05.009

    Article  Google Scholar 

  • Nasseri M, Mohanty B, Robin P-Y (2005) Characterization of microstructures and fracture toughness in five granitic rocks. Int J Rock Mech Min 42(3):450–460. doi:10.1016/j.ijrmms.2004.11.007

    Article  Google Scholar 

  • Nasseri M, Schubnel A, Young R (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. Int J Rock Mech Min 44(4):601–616. doi:10.1016/j.ijrmms.2006.09.008

    Article  Google Scholar 

  • Nasseri M, Schubnel A, Benson P, Young R (2009) Common evolution of mechanical and transport properties in thermally cracked Westerly granite at elevated hydrostatic pressure. Pure appl Geophys 166(5):927–948. doi:10.1007/s00024-009-0485-2

    Article  Google Scholar 

  • Nordlund E, Li C, Carlsson B (1999) Mechanical properties of the diorite in the prototype repository at Äspö-HRL-laboratory tests. International Progress Report, IPR-99-25, SKB, Sweden

  • Ouchterlony F (1988) Suggested methods for determining the fracture toughness of rocks. Int J Rock Mech Min 25(2):71–96

    Google Scholar 

  • Qiu-hua R, Zhi W, Hai-feng X, Qiang X (2007) Experimental study of mechanical properties of sandstone at high temperature. J Cent South Univ Technol 14(1):478–483

    Google Scholar 

  • Siren T (2012) Fracture toughness properties of rocks in Olkiluoto: laboratory measurement 2008–2009. Working report 2012-25. Posiva, Olkiluoto, Finland

  • Wang J-J, Zhu J-G, Chiu C, Zhang H (2007) Experimental study on fracture toughness and tensile strength of clay. Eng Geol 94:65–75. doi:10.1016/j.enggeo.2007.06.005

    Article  Google Scholar 

  • Whittaker B, Singh R, Sun G (1992) Rock fracture mechanics: principles, design and applications. Elsevier, Amsterdam

    Google Scholar 

  • Yin T, Li X, Xia K, Huang S (2012) Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite. Rock Mech Rock Eng 45(6):1087–1094. doi:10.1007/s00603-012-0240-3

    Article  Google Scholar 

  • Yu Y (2001) Measuring properties of rock from the site of permanent shiplock in three Gorges project. Test report. Yangtze River Scientific Research Institute

  • Zhang Z (2002) An empirical relation between mode I fracture toughness and the tensile strength of rock. Int J Rock Mech Min 39(3):401–406. doi:10.1016/S1365-1609(02)00032-1

    Article  Google Scholar 

  • Zhang Z, Kou S, Lindqvist P, Yu Y (1998) The relationship between the fracture toughness and tensile strength of rock. In: Yu M, Fan SC (eds) Strength theories: applications, development and prospects for 21st century, pp 215–219. Science Press, Beijing

  • Zhixi C, Mian C, Yan J, Rongzun H (1997) Determination of rock fracture toughness and its relationship with acoustic velocity. Int J Rock Mech Min 34(3–4):49.e1–49.e11. doi:10.1016/S1365-1609(97)00148-2

    Google Scholar 

  • Zhou YX, Xia K, Li XB, Li HB, Ma GW, Zhao J, Zhou ZL, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min 49:105–112. doi:10.1016/j.ijrmms.2011.10.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Guha Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guha Roy, D., Singh, T.N., Kodikara, J. et al. Correlating the Mechanical and Physical Properties with Mode-I Fracture Toughness of Rocks. Rock Mech Rock Eng 50, 1941–1946 (2017). https://doi.org/10.1007/s00603-017-1196-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-017-1196-0

Keywords

Navigation