Skip to main content
Log in

Dynamic Strength and Fracturing Behavior of Single-Flawed Prismatic Marble Specimens Under Impact Loading with a Split-Hopkinson Pressure Bar

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Dynamic impact tests are performed on prismatic marble specimens containing a single flaw using a modified split-Hopkinson pressure bar device. The effects of pre-existing flaws with different flaw angles and lengths on the dynamic mechanical properties are analyzed. The results demonstrate that the dynamic strength of marble is influenced by the flaw geometry. The dynamic fracturing process of flawed specimens is monitored and characterized with the aid of a high-speed camera. Cracking of marble specimens with a single pre-existing flaw under impact loading is analyzed based on experimental investigations. Cracking involves two major stages: formation of white patches and development of macrocracks. Six typical crack types are identified on the basis of their trajectories and initiation mechanisms. The presence of an artificial flaw may change the failure mode of marble from splitting-dominated for an intact specimen to shear-dominated for a flawed specimen under dynamic loading. Nevertheless, the geometry of the flaws appears to have a slight influence on the failure modes of flawed specimens under impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bobet A, Einstein H (1998) Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci 35(7):863–888

    Article  Google Scholar 

  • Brooks Z (2010) A nanomechanical investigation of the crack tip process zone of marble. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  • Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries-insight from numerical modeling. Int J Rock Mech Min Sci 45(5):763–772

    Article  Google Scholar 

  • Chen G, Kemeny J, Harpalani S (1992) Fracture propagation and coalescence in marble plates with pre-cut notches under compression. In: Proceedings of the symposium on fractured jointed rock masses, Lake Tahoe, CA, pp 443–448

  • Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666

    Article  Google Scholar 

  • Diederichs MS (2007) The 2003 Canadian Geotechnical Colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J 44(9):1082–1116

    Article  Google Scholar 

  • Eberhardt E, Stead D, Stimpson B (1999) Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. Int J Rock Mech Min Sci 36(3):361–380

    Article  Google Scholar 

  • Hajiabdolmajid V, Kaiser P, Martin C (2002) Modelling brittle failure of rock. Int J Rock Mech Min Sci 39(6):731–741

    Article  Google Scholar 

  • Huang J, Ganglin C, Yonghong Z, Ren W (1990) An experimental study of the strain field development prior to failure of a marble plate under compression. Tectonophysics 175(1):269–284

    Google Scholar 

  • Huang S, Xia KW, Dai F (2012) Establishment of a dynamic Mohr–Coulomb failure criterion for rocks. Int J Nonlinear Sci Numer Simul 13(1):55–60. doi:10.1515/ijnsns.2011.120

    Article  Google Scholar 

  • Lau J, Gorski B (1992) Uniaxial and triaxial compression tests on URL rock samples from boreholes 207–045-GC3 and 209–069-PH3: CANMET Divisional Report. Mining Research Laboratories, Varennes

  • Lee H, Jeon S (2011) An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int J Solids Struct 48(6):979–999

    Article  Google Scholar 

  • Li H, Wong LNY (2012) Influence of flaw inclination angle and loading condition on crack initiation and propagation. Int J Solids Struct 49(18):2482–2499

    Article  Google Scholar 

  • Li X, Lok T, Zhao J (2005a) Dynamic characteristics of granite subjected to intermediate loading rate. Rock Mech Rock Eng 38(1):21–39

    Article  Google Scholar 

  • Li Y-P, Chen L-Z, Wang Y-H (2005b) Experimental research on pre-cracked marble under compression. Int J Solids Struct 42(9):2505–2516

    Article  Google Scholar 

  • Li X, Zhou Z, Hong L, Yin T (2009) Large diameter SHPB tests with a special shaped striker. ISRM News J 12:76–79

    Google Scholar 

  • Li JC, Ma GW, Huang X (2010a) Analysis of wave propagation through a filled rock joint. Rock Mech Rock Eng 43(6):789–798. doi:10.1007/s00603-009-0033-5

    Article  Google Scholar 

  • Li JC, Ma GW, Zhao J (2010b) An equivalent viscoelastic model for rock mass with parallel joints. J Geophys Res. doi:10.1029/2008jb006241

    Google Scholar 

  • Li D, Li CC, Li X (2011a) Influence of sample height-to-width ratios on failure mode for rectangular prism samples of hard rock loaded in uniaxial compression. Rock Mech Rock Eng 44(3):253–267

    Article  Google Scholar 

  • Li JC, Ma GW, Zhao J (2011b) Analysis of stochastic seismic wave interaction with a slippery rock fault. Rock Mech Rock Eng 44(1):85–92. doi:10.1007/s00603-010-0109-2

    Article  Google Scholar 

  • Li X, Zou Y, Zhou Z (2014) Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng 47(5):1693–1709

    Article  Google Scholar 

  • Li D, Cheng T, Zhou T, Li X (2015) Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading. Chinese J Rock Mech Eng 34(2):249–260. doi:10.13722/j.cnki.jrme.2015.02.004 (in Chinese)

    Google Scholar 

  • Li X, Zhou T, Li D, Wang Z (2016) Experimental and numerical investigations on feasibility and validity of prismatic rock specimen in SHPB. Shock Vib. doi:10.1155/2016/7198980

    Google Scholar 

  • Lok T, Li X, D-S Liu, Zhao P (2002) Testing and response of large diameter brittle materials subjected to high strain rate. J Mater Civ Eng 14(3):262–269

    Article  Google Scholar 

  • Martin C, Chandler N (1994) The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci 31(6):643–659

    Article  Google Scholar 

  • Morgan SP, Johnson CA, Einstein HH (2013) Cracking processes in Barre granite: fracture process zones and crack coalescence. Int J Fract 180(2):177–204. doi:10.1007/s10704-013-9810-y

    Article  Google Scholar 

  • Park CH, Bobet A (2009) Crack coalescence in specimens with open and closed flaws: a comparison. Int J Rock Mech Min Sci 46(5):819–829. doi:10.1016/j.ijrmms.2009.02.006

    Article  Google Scholar 

  • Park CH, Bobet A (2010) Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng Fract Mech 77(14):2727–2748. doi:10.1016/j.engfracmech.2010.06.027

    Article  Google Scholar 

  • Sagong M, Bobet A (2002) Coalescence of multiple flaws in a rock-model material in uniaxial compression. Int J Rock Mech Min Sci 39(2):229–241

    Article  Google Scholar 

  • Tang C, Liu H, Lee P, Tsui Y, Tham L (2000) Numerical studies of the influence of microstructure on rock failure in uniaxial compression—part I: effect of heterogeneity. Int J Rock Mech Min Sci 37(4):555–569

    Article  Google Scholar 

  • Wong RH, Chau K (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min Sci 35(2):147–164

    Article  Google Scholar 

  • Wong L, Einstein H (2009a) Crack coalescence in molded gypsum and Carrara marble: part 2—microscopic observations and interpretation. Rock Mech Rock Eng 42(3):513–545

    Article  Google Scholar 

  • Wong LNY, Einstein HH (2009b) Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression. Int J Rock Mech Min Sci 46(2):239–249. doi:10.1016/j.ijrmms.2008.03.006

    Article  Google Scholar 

  • Wong LNY, Zou C, Cheng Y (2014) Fracturing and failure behavior of Carrara marble in quasistatic and dynamic Brazilian disc tests. Rock Mech Rock Eng 47(4):1117–1133

    Article  Google Scholar 

  • Yang S-Q, Jing H-W (2011) Strength failure and crack coalescence behavior of brittle sandstone samples containing a single fissure under uniaxial compression. Int J Fract 168(2):227–250

    Article  Google Scholar 

  • Yang S-Q, Jing H-W, Wang S-Y (2012) Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng 45(4):583–606

    Article  Google Scholar 

  • Yin P, Wong R, Chau K (2014) Coalescence of two parallel pre-existing surface cracks in granite. Int J Rock Mech Min Sci 68:66–84

    Google Scholar 

  • Zhang QB, Zhao J (2013) Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads. Int J Rock Mech Min Sci 60:423–439. doi:10.1016/j.ijrmms.2013.01.005

    Google Scholar 

  • Zhao G-F, Russell AR, Zhao X, Khalili N (2014) Strain rate dependency of uniaxial tensile strength in Gosford sandstone by the distinct lattice spring model with X-ray micro CT. Int J Solids Struct 51(7):1587–1600

    Article  Google Scholar 

  • Zhou Z, Li X, Ye Z, Liu K (2010) Obtaining constitutive relationship for rate-dependent rock in SHPB tests. Rock Mech Rock Eng 43(6):697–706

    Article  Google Scholar 

  • Zhou Y, Xia K, Li X, Li H, Ma G, Zhao J, Zhou Z, Dai F (2012) Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials. Int J Rock Mech Min Sci 49:105–112

    Article  Google Scholar 

  • Zou C, Wong LNY (2014) Experimental studies on cracking processes and failure in marble under dynamic loading. Eng Geol 173:19–31

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the National Natural Science Foundation of China (Grants Nos. 51474250, 11102239 and 11472311) and the State Key Research Development Program of China (Grant No. 2016YFC0600706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diyuan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhou, T. & Li, D. Dynamic Strength and Fracturing Behavior of Single-Flawed Prismatic Marble Specimens Under Impact Loading with a Split-Hopkinson Pressure Bar. Rock Mech Rock Eng 50, 29–44 (2017). https://doi.org/10.1007/s00603-016-1093-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-1093-y

Keywords

Navigation