Skip to main content
Log in

Numerical SHPB Tests of Rocks Under Combined Static and Dynamic Loading Conditions with Application to Dynamic Behavior of Rocks Under In Situ Stresses

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A modified split Hopkinson pressure bar (SHPB) numerical testing system is established to study the characteristics of rocks under simultaneous static and dynamic loading conditions following verification of the capability of the SHPB numerical system through comparison with laboratory measurements (Liao et al. in Rock Mech Rock Eng, 2016. doi:10.1007/s00603-016-0954-8). Three different methods are employed in this numerical testing system to address the contact problem between a rock specimen and bars. The effects of stand-alone static axial pressure, stand-alone lateral confining pressures, and a combination of them are analyzed. It is determined that the rock total strength and the dynamic strength are greatly dependent on the static axial and confining pressures. Moreover, the friction along the interfaces between the rock specimen and bars cannot be ignored, particularly for high axial pressure conditions. Subsequently, the findings are applied to determine the dynamic behavior of rocks with in situ stresses. The effects of the magnitude of horizontal and vertical initial stresses at varied depths and their ratios are investigated. It is observed that the dynamic strength of deep rocks increases with increasing depth or the ratio of horizontal-to-vertical initial stresses (K). The dynamic behavior of deeper rocks is more sensitive to K, and the rock dynamic strength increases faster with depth in areas with higher K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Alves M, Karagiozova D, Micheli GB, Calle MAG (2012) Limiting the influence of friction on the split Hopkinson pressure bar tests by using a ring specimen. Int J Impact Eng 49:130–141. doi:10.1016/j.ijimpeng.2012.04.005

    Article  Google Scholar 

  • Asano N (1986) A penalty function type of virtual work principle for impact contact problems of two bodies. Bull JSME 29:3701–3709

    Article  Google Scholar 

  • Brown E, Hoek E (1978) Trends in relationships between measured in situ stresses and depth. Int J Rock Mech Min Sci 4:211–215

    Article  Google Scholar 

  • Cadoni E, Albertini C (2011) Modified Hopkinson bar technologies applied to the high strain rate rock tests. Advances in rock dynamics and applications. CRC Press, Boca Raton, pp 79–104

    Google Scholar 

  • Chen W, Ravichandran G (1997) Dynamic compressive failure of a glass ceramic under lateral confinement. J Mech Phys Solids 45:1303–1328. doi:10.1016/S0022-5096(97)00006-9

    Article  Google Scholar 

  • Chen W, Yeh J (1988) A new finite element technique for dynamic contact problems with friction. J Theor Appl Mech 7:161–175

    Google Scholar 

  • Christensen R, Swanson S, Brown W (1972) Split-Hopkinson-bar tests on rock under confining pressure. Exp Mech 12:508–513

    Article  Google Scholar 

  • Forquin P, Gary G, Gatuingt F (2008) A testing technique for concrete under confinement at high rates of strain. Int J Impact Eng 35:425–446

    Article  Google Scholar 

  • Frew DJ, Akers SA, Chen W, Green M (2010) Development of a dynamic triaxial Kolsky bar. Meas Sci Technol 21:105704

    Article  Google Scholar 

  • Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rock. J Soil Mech Found Div 94(3):637–660

    Google Scholar 

  • Hartley RS, Cloete TJ, Nurick GN (2007) An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test. Int J Impact Eng 34:1705–1728. doi:10.1016/j.ijimpeng.2006.09.003

    Article  Google Scholar 

  • Li G, Tang C-A (2015) A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock. Int J Rock Mech Min Sci 74:133–150

    Article  Google Scholar 

  • Li X, Zhou Z, Ye Z, Ma C, Zhao F, Zuo Y, Hong L (2008a) Study of rock mechanical characteristics under coupled static and dynamic loads. Chin J Rock Mech Eng 27:1387–1395

    Google Scholar 

  • Li XB, Zhou ZL, Lok T-S, Hong L, Yin TB (2008b) Innovative testing technique of rock subjected to coupled static and dynamic loads. Int J Rock Mech Min Sci 45:739–748. doi:10.1016/j.ijrmms.2007.08.013

    Article  Google Scholar 

  • Li X, Gong F, Gao K, Yi S (2010) Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads Chin. J Rock Mech Eng 29:251–260 (In Chinese)

    Google Scholar 

  • Liao ZY, Zhu JB, Xia K, Tang CA (2016) Determination of dynamic compressive and tensile behaviors of rocks from numerical tests of split Hopkinson pressure and tension bars. Rock Mech Rock Eng. doi:10.1007/s00603-016-0954-8

    Google Scholar 

  • Lindholm US, Yeakley LM, Nagy A (1974) The dynamic strength and fracture properties of dresser basalt. Int J Rock Mech Min Sci 11:181–191. doi:10.1016/0148-9062(74)90885-7

    Article  Google Scholar 

  • Liu JB, Yao L, Wang D (1994) A method for calculating the dynamic effect of dynamic and static friction on a contactable crack. Acta Mech Sin 26:494–502 (In Chinese)

    Google Scholar 

  • Malvern LE, Jenkins DA, Tang T, McClure S (1990) Dynamic testing of laterally confined concrete. Micromechanics of Failure of Quasi-Brittle Materials. Barking Essex, Elsevier Appl Sci Publ Ltd

    Google Scholar 

  • Rome J, Isaacs J, Nemat-Nasser S (2002) Hopkinson techniques for dynamic triaxial compression tests. In: Gdoutos EE (ed) Recent advances in experimental mechanics. Springer, pp 3–12

  • Tang CA (1997) Numerical simulation of progressive rock failure and associated seismicity. Int J Rock Mech Min Sci 34:249–261. doi:10.1016/S0148-9062(96)00039-3

    Article  Google Scholar 

  • Trautmann A, Siviour CR, Walley SM, Field JE (2005) Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. Int J Impact Eng 31:523–544. doi:10.1016/j.ijimpeng.2004.02.007

    Article  Google Scholar 

  • Yang YF, Li G, Liang ZZ, Tang CA (2015) Numerical investigation on crack branching during collision for rock-like material. Theor Appl Fract Mech 76:35–49. doi:10.1016/j.tafmec.2014.12.010

    Article  Google Scholar 

  • Zhang M, Wu HJ, Li QM, Huang FL (2009) Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int J Impact Eng 36:1327–1334. doi:10.1016/j.ijimpeng.2009.04.009

    Article  Google Scholar 

  • Zheng H, Liu DF, Lee CF, Yue ZQ (2004) A sophisticated node-pair model for interface problems. Comput Geotech 31:137–153. doi:10.1016/j.compgeo.2003.11.004

    Article  Google Scholar 

  • Zhou Z, Li X, Zou Y, Jiang Y, Li G (2014) Dynamic Brazilian tests of granite under coupled static and dynamic loads. Rock Mech Rock Eng 47:495–505

    Article  Google Scholar 

  • Zhu WC, Tang CA (2004) Micromechanical model for simulating the fracture process of rock. Rock Mech Rock Eng 37:25–56

    Article  Google Scholar 

  • Zhu WC, Bai Y, Li XB, Niu LL (2012) Numerical simulation on rock failure under combined static and dynamic loading during SHPB tests. Int J Impact Eng 49:142–157. doi:10.1016/j.ijimpeng.2012.04.002

    Article  Google Scholar 

  • Zhu JB, Deng XF, Zhao XB, Zhao J (2013) A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC. Rock Mech Rock Eng 46:1429–1442. doi:10.1007/s00603-012-0352-9

    Article  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the Research Grant Council (No. 25201814), the National Natural Science Foundation of China (No. 41402241), and the National Basic Research Program of China (No. 2014CB047103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J.B., Liao, Z.Y. & Tang, C.A. Numerical SHPB Tests of Rocks Under Combined Static and Dynamic Loading Conditions with Application to Dynamic Behavior of Rocks Under In Situ Stresses. Rock Mech Rock Eng 49, 3935–3946 (2016). https://doi.org/10.1007/s00603-016-0993-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0993-1

Keywords

Navigation