Skip to main content

Advertisement

Log in

Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices

  • BookReview
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 10 April 2017

Abstract

Rockfall phenomena represent a major hazard in mountainous areas because they can cause severe damage to infrastructure and buildings as well as serious injuries and fatalities. Rockfalls do not pose the same level of economic risk as large-scale landslides, yet they are responsible for a similar number of accidents and fatalities. Therefore, appropriate land-use planning is necessary to protect people, buildings and facilities from rockfall hazards. Over the last two decades, several methodologies have been proposed to assess rockfall hazards, identify potentially dangerous areas (i.e., rock cliffs with failure-prone blocks) and provide guidelines for choosing and installing the most appropriate mitigation measures. This paper provides a comprehensive review of the existing rockfall hazard assessment methodologies. In particular, the review focuses on qualitative methods that allow a rapid evaluation of a rockfall hazard without costly and time-consuming numerical simulations. The most commonly adopted methodologies in Europe and North America are described and critically analyzed to highlight their differences and similarities and to identify their primary advantages, limitations and fields of application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • AASHTO—American Association of State Highway and Transportation Officials (1994) A policy on geometric design of highways and streets. AASHTO, Washington

  • AASHTO—American Association of State Highway and Transportation Officials (2004) A policy on geometric design of highways and streets (the green book). AASHTO, Washington

  • Abbruzzese JM, Sauthier C, Labiouse V (2009) Considerations on Swiss methodologies for rock fall hazard mapping based on trajectory modelling. Nat Hazards Earth Syst Sci 9(4):1095–1109

    Article  Google Scholar 

  • Alejano LR, Stockhausen HW, Alonso E, Bastante FG, Oyanguren PR (2008) ROFRAQ: a statistics-based empirical method for assessing accident risk from rockfalls in quarries. Int J Rock Mech Min Sci 45(8):1252–1272

    Article  Google Scholar 

  • Andrew RD (1994) The Colorado rockfall hazard rating system. Colorado Department of Transportation, report CTI-CDOT-2-94

  • Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1(1):73–81

    Article  Google Scholar 

  • Barton N (1973) Review of a new shear-strength criterion for rock joints. Eng Geol 7(4):287–332

    Article  Google Scholar 

  • Bateman V (2003) Development of a database to manage rockfall hazard: the Tennessee rockfall hazard database. Proceedings of 82nd annual meeting of Transportation Research Board, Washington

  • Bieniawski ZT (1989) Engineering rock mass classifications. Wiley, New York

    Google Scholar 

  • Bolin H, Lide C, Xuanming P, Guanning L, Xiaoting C, Haogang D, Tianci L (2010) Assessment of the risk of rockfalls in Wu Gorge, Three Gorges, Chinab. Landslides 7(1):1–11

    Article  Google Scholar 

  • Brabb EE (1984) Innovative approaches to landslide hazard mapping. In: Proceedings 4th international symposium on landslides, Toronto, vol 1, pp 307–324

  • Brawner CO, Wyllie D (1976) Rock slope stability on railway projects. Am Railw Eng Assoc Bull 656:449–474

    Google Scholar 

  • Brown ET (1981) Rock characterization, testing and monitoring. ISRM suggested methods. Pergamon, Oxford, pp 171–183

  • Budetta P (2004) Assessment of rockfall risk along roads. Nat Hazards Earth Syst Sci 4:71–81

    Article  Google Scholar 

  • Budetta P, Nappi M (2013) Comparison between qualitative rockfall risk rating systems for a road affected by high traffic intensity. Nat Hazards Earth Syst Sci 13(6):1643–1653

    Article  Google Scholar 

  • Bunce CM, Cruden D, Morgenstern N (1997) Assessment of the hazard from rock fall on a highway. Can Geotech J 34:344–356

    Article  Google Scholar 

  • Cancelli A, Crosta GB (1993) Hazard and risk assessment in rockfall prone areas. In: Telford T (ed) Risk reliability in ground engineering, pp 177–190

  • Cascini L (2008) Applicability of landslide susceptibility and hazard zoning at different scales. Eng Geol 102:164–177

    Article  Google Scholar 

  • Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. Landslide risk management. Taylor and Francis, London, pp 199–235

    Google Scholar 

  • Castelli M, Scavia C (2008) A multidisciplinary methodology for hazard and risk assessment of rock avalanches. Rock Mech Rock Eng 41(1):3–36

    Article  Google Scholar 

  • CNR—Consiglio Nazionale delle Ricerche (1980) Norme tecniche per le costruzioni stradali. Pon 1:11–15

    Google Scholar 

  • Copons R, Vilaplana JM, Corominas J, Altimir J, Amigó J (2004) Rockfall risk management in high-density urban areas. The Andorran experience, landslide hazard and risk, pp 675–698

  • Corominas J, Mavrouli O (2011) Rockfall quantitative risk assessment. In: Lambert S, Nicot F (eds) Rockfall engineering. John Wiley & Sons, Hoboken, pp 255–296

    Google Scholar 

  • Corominas J, Moya J (2008) A review of assessing landslide frequency for hazard zoning purposes. Eng Geol 102(3):193–213

    Article  Google Scholar 

  • Corominas J, Copons R, Vilaplana JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. Nat Hazards 30(3):421–435

    Article  Google Scholar 

  • Corominas J, Van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263

    Google Scholar 

  • Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422

    Article  Google Scholar 

  • Crosta GB, Agliardi F (2004) Parametric evaluation of 3D dispersion of rockfall trajectories. Nat Hazards Earth Syst Sci 4(4):583–598

    Article  Google Scholar 

  • Crosta GB, Locatelli C (1999) Approccio alla valutazione del rischio da frane per crollo. In: Proceedings Studi geografici e geologici in onore di Severino Belloni. Glauco Brigatti Publisher, Genoa, pp 259–286

    Google Scholar 

  • Crosta GB, Frattini P, Sterlacchini S (2001) Valutazione e gestione del rischio da frana: principi e metodi. Regione Lombardia Publication, Milano 169

    Google Scholar 

  • Cruden DM, Fell R (1997) Landslide risk assessment. Balkema, Rotterdam

    Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, transportation research board special report 247. National Research Council, USA, pp 36–75

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87

    Article  Google Scholar 

  • Deere DU, Deere DW (1988) The rock quality designation (RQD) index in practice. In: Symposium on rock classification systems for engineering purposes, Cincinnati

  • Derron MH, Jaboyedoff M, Blikra LH (2005) Preliminary assessment of rockslide and rockfall hazards using a DEM (Oppstadhornet, Norway). Nat Hazards Earth Syst Sci 5:285–292

    Article  Google Scholar 

  • Dussauge-Peisser C, Helmstetter A, Grasso JR, Hantz D, Desvarreux P, Jeannin M, Giraud A (2002) Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat Hazards Earth Syst Sci 2:15–26

    Article  Google Scholar 

  • Dussauge-Peisser C, Grasso JR, Helmstetter A (2003) Statistical analysis of rockfall volume distributions: implications for rockfall dynamics. J Geophys Res Sol Ea 108:1–11

    Google Scholar 

  • Evans S, Hungr O (1993) The assessment of rockfall hazard at the base of talus slopes. Can Geotech J 30:620–636

    Article  Google Scholar 

  • Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31(2):261–272

    Article  Google Scholar 

  • Fell R, Hartford D (1997) Landslide risk management. Cruden and Fell. Landslide risk assessment, Balkema, Rotterdam, pp 51–109

    Google Scholar 

  • Fell R, Ho K, Lacasse S, Leroi E (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor and Francis Group, London

    Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Eng Geol 102(3):99–111

    Article  Google Scholar 

  • Ferlisi S, Cascini L, Corominas J, Matano F (2012) Rockfall risk assessment to persons travelling in vehicles along a road: the case study of the Amalfi coastal road (southern Italy). Nat Hazards 62(2):691–721

    Article  Google Scholar 

  • Fernandez-Hernandez M, Paredes C, Castedo R, Llorente M, de la Vega-Panizo R (2012) Rockfall detachment susceptibility map in El Hierro Island, Canary Islands, Spain. Nat Hazards 64:1247–1271

    Article  Google Scholar 

  • Ferrari P, Giannini F (1975) Geometria e progetto di strade. Ingegneria stradale, I, ISEDI, Milano

  • Ferrari F, Apuani T, Giani GP (2011) Applicazione di modelli cinematici per lo studio di frane di crollo in media Val San Giacomo (SO). Geologia Ambientale e Mineraria 48(1):55–64

    Google Scholar 

  • Ferrari F, Giani GP, Apuani T (2013) Towards the comprehension of rockfall motion, with the aid of in situ tests. Ital J Eng Geol Environ 6:163–171

    Google Scholar 

  • Ferrero AM, Migliazza M, Roncella R, Segalini A (2011) Rock cliffs hazard analysis based on remote geostructural surveys: the Campione del Garda case study (Lake Garda, Northern Italy). Geomorphology 125(4):457–471

    Article  Google Scholar 

  • Fookes PG, Sweeny M (1976) Stabilization and control of local rockfalls and degrading rock slopes. Quart J Eng Geol 9:37–55

    Article  Google Scholar 

  • Franklin JA, Senior SA (1997) The Ontario rockfall hazard rating system. In: Proceedings of the conference on engineering geology and environment, Athens, pp 647–658

  • Franklin JA, Wood DF, Senior SA, Blair JA, Wright J (2013) RHRON: Ontario rockfall hazard rating system—field procedures manual, Ontario Ministry of Transportation Materials Engineering and Research Office Report, MERO-043

  • Frattini P, Crosta G, Carrara A, Agliardi F (2008) Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology 94:419–437

    Article  Google Scholar 

  • Gardner J (1983) Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky Mountains. Zeitschrift für Geomorphologie 27(3):311–324

    Google Scholar 

  • Gerath R, Jakob M, Mitchell P, VanDine D, Finn L, Gillespie D, Kuan S, Naesgaard E, Patrick B, Skermer N, Wallis D (2006) Guidelines for legislated landslide assessments for proposed residential development in British Columbia. Association of Professional Engineers and Geoscientists of British Columbia, Vancouver, BC

    Google Scholar 

  • Guenther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazards Earth Syst Sci 4:95–102

    Article  Google Scholar 

  • Guzzetti F (2005) Review and selection of optimal geological models related to spatial information available. Risk advanced weather forecast system to advise on risk events and management action 1.14. IRPI CNR, Perugia, Italy

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503

    Article  Google Scholar 

  • Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006a) Landslide hazard assessment in the Collazzone area, Umbria, central Italy. Nat Hazards Earth Syst Sci 6:115–131

    Article  Google Scholar 

  • Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006b) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184

    Article  Google Scholar 

  • Hadjin DJ (2002) New York State Department of Transportation rock slope rating procedure and rockfall assessment. Transp Res Rec 1786:02–3978

    Article  Google Scholar 

  • Hantz D, Vengeon JM, Dussauge-Peisser C (2003) An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat Hazards Earth Syst Sci 3(6):693–701

    Article  Google Scholar 

  • Hasekioğulları GD, Ercanoglu M (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Nat Hazards 63(2):1157–1179

    Article  Google Scholar 

  • Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, Zurich

  • Hoek E (1999) Putting numbers to geology—an engineer’s viewpoint. Q J Eng Geol Hydrogeol 32(1):1–19

    Article  Google Scholar 

  • Hoek E (2000) Analysis of rockfall hazards. In: Hoek E (ed) Practical rock engineering, pp 117–136

  • Hudson JA (1992) Rock engineering systems: theory & practice. Ellis Horwood, Chichester

    Google Scholar 

  • Hudson JA (2013) A review of rock engineering systemss (RES) applications over the last 20 years. In: Feng XT, Hudson JA, Tan F (eds) Rock characterisation, modelling and engineering design methods. Taylor and Francis Group, London, pp 419–424

    Chapter  Google Scholar 

  • Hudson JA, Harrison JP (1992) A new approach to studying complete rock engineering problems. Q J Eng Geol 25:93–105

    Article  Google Scholar 

  • Hungr O, Evans S, Hazzard J (1999) Magnitude and frequency of rockfalls and rock slides along the main transportation corridors of south-western British Columbia. Can Geotech J 36:224–238

    Article  Google Scholar 

  • Hungr O, Fell R, Couture R, Eberhardt E (2005) Landslide risk management. Taylor and Francis Group, London

    Google Scholar 

  • ISRM—International Society for Rock Mechanics, Commission on Standardization of Laboratory and Field Tests (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  • ISRM—International Society for Rock Mechanics, Commission on Standardization of Laboratory and Field Tests, Committee on Laboratory Tests (1979) Suggested methods for determining water content. Porosity, density, absorption and related properties and swelling and slake-durability index properties. Int J Rock Mech Min Sci Geomech Abstr 16(2):151–156

    Article  Google Scholar 

  • Jaboyedoff M, Labiouse V (2003) Preliminary assessment of rockfall hazard based on GIS data. In: 10th international congress on rock mechanics, ISRM, pp 575–578, Johannesburgh

  • Jaboyedoff M, Baillifard F, Hantz D, Heidenreich B, Mazzoccola D (2001) Terminologie. In: Carere, Ratto, Zanolini (eds) Prevention des mouvements de versants et des instabilites de falaises, pp 48–57

  • Jaboyedoff M, Baillifard F, Philippossian F, Rouiller JD (2004) Assessing fracture occurrence using “weighted fracturing density”: a step towards estimating rock instability hazard. Nat Hazards Earth Syst Sci 4:83–93

    Article  Google Scholar 

  • Jaboyedoff M, Dudt JP, Labiouse V (2005) An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Nat Hazards Earth Syst Sci 5:621–632

    Article  Google Scholar 

  • Kayastha P, Dhital MR, De Smedt F (2013) Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, west Nepal. Comput Geosci 52:398–408

    Article  Google Scholar 

  • Koleini M, Van Rooy JL (2011) Falling rock hazard index: a case study from the Marun Dam and power plant, south-western Iran. Bull Eng Geol Environ 70(2):279–290

    Article  Google Scholar 

  • Komac M (2006) A landslide susceptibility model using the analytical hierarchy process method and multivariate statistics in perialpine Slovenia. Geomorphology 74(1):17–28

    Article  Google Scholar 

  • Lambert S, Nicot F (2011) Rockfall engineering. John Wiley & Sons, Hoboken

    Google Scholar 

  • Li ZH, Huang HW, Xue YD, Yin J (2009) Risk assessment of rockfall hazards on highways. Georisk Assess Manag Risk Eng Syst Geohazards 3(3):147–154

    Article  Google Scholar 

  • Maerz NH, Youssef A, Lauer R (2004) MORFH RS: a rockcut rating system for Missouri highways. In: Proceedings of the 55th highway geology symposium, Kansas City, Missouri, pp 406–424

  • Maerz NH, Youssef A, Fennessey TW (2005) New risk—consequence rockfall hazard rating system for Missouri highways using digital image analysis. Environ Eng Geosci 11(3):229–249

    Article  Google Scholar 

  • Malamud B, Turcotte D, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711

    Article  Google Scholar 

  • Marquinez J, Duarte RM, Farias P, Sánchez MJ (2003) Predictive GIS-based model of rockfall activity in mountain cliffs. Nat Hazards 30(3):341–360

    Article  Google Scholar 

  • Mauldon M, Drumm EC, Dunne WM, Bateman N, Rose B, Kim M (2007) Rockfall management system for Tennessee. Tennessee Department of Transportation Division of Material and Tests, Nashville, p 301

    Google Scholar 

  • Mavrouli OC (2011) Quantitative evaluation of the rockfall risk. Application to the Solà d’Andorra. PhD thesis, Universitat Politècnica de Catalunya

  • Mazzoccola, D, Sciesa E (2001) La metodologia RHAP (rockfall hazard assessment procedure). Prevenzione dei fenomeni di instabilita delle pareti rocciose. In: Programme Interreg II C, pp 84–95

  • Mazzoccola DF, Hudson JA (1996) A comprehensive method of rock mass characterization for indicating natural slope instability. Q J Eng GeolHydrogeol 29(1):37–56

    Article  Google Scholar 

  • Mazzoccola D, Sciesa E (2000) Implementation and comparison of different methods for rockfall hazard assessment in the Italian Alps. In: 8th international symposium on landslides, vol 2, pp 1035–1040. Balkema, Rotterdam

  • Mölk M, Poisel R, Weilbold J, Angerer H (2008) Rockfall rating systems: is there a comprehensive method for hazard zoning in populated areas? In: Proceedings of the 11th interpraevent congress 2:207–218, Dornbirn, Austria

  • National Highway Institute (1993) Rockfall hazard rating system participant’s manual. NHI course no. 130220, US Department of Transportation, Federal Highway Administration, publication no. FHWA SA-93-057

  • New York State DOT (1996) Rock slope rating procedure. Geotechnical engineering manual, 15, Geotechnical Engineering Bureau, Albany

  • New York State DOT (2007) Rock slope rating procedure. Geotechnical Engineering Manual, 15, revision no. 1. Geotechnical Engineering Bureau, Albany

  • OFAT, OFEE and OFEFP (1997) Recommandations 1997—prise en compte des dangers dus aux mouvements de terrain dans le cadre des activités de l’aménagement du territoire, edited by: OFAT/OFEE/OFEFP, Bern

  • Pack R, Boie K, Mather S, Farrell J (2006) UDOT rockfall hazard rating system: final report and user’s manual (report UT-06.07). Utah State University, Logan

  • Pantelidis L (2009) System of quantitative and qualitative assessment of highway geotechnical assets failure hazard and relevant consequences. PhD thesis, Aristotle University of Thessaloniki

  • Pantelidis L (2011) A critical review of highway slope instability risk assessment systems. Bull Eng Geol Environ 70:395–400

    Article  Google Scholar 

  • Peila D, Patrucco M, Falanesca M (2011) Quantification and management of rockfall risk in opencast quarrying activities. Environ Eng Geosci 17(1):39–51

    Article  Google Scholar 

  • Pierson LA (1992) The rockfall hazard rating system. Transportation research record: rockfall prediction and control and landslide case histories, no 1343, pp. 6–13

  • Pierson LA, Van Vickle R (1993) Rockfall hazard rating system. Participant’s manual, report FHWA-SA-93-057. FHWA, NHI

  • Pierson LA, Davis SA, Van Vickle R (1990) Rockfall hazard rating system implementation manual, federal highway administration (FHWA), report FHWA-OR-EG-90–01, FHWA. US Department of Transporation, Oregon

    Google Scholar 

  • Pierson LA, Beckstrand DL, Black BA (2005) Rockfall hazard classification and mitigation system. Montana Department of Transportation, final report, FHWA/MT-05-011/8176

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 6(32):965–996

    Article  Google Scholar 

  • Raetzo H, Lateltin O, Bollinger D, Tripet J (2002) Hazard assessment in Switzerland—code of practice for mass movements. B Eng Geol Environ 61:263–268

    Article  Google Scholar 

  • Ravanel L, Deline P (2011) Climate influence on rockfalls in high-Alpine steep rockwalls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the ‘Little Ice Age’. Holocene 21(2):357–365

    Article  Google Scholar 

  • Regione Lombardia (2000) Procedure per la valutazione e la zonazione della pericolosità e del rischio da frana in Regione Lombardia. Boll Uff Reg Lomb 51

  • Reichenbach P, Galli M, Cardinali M, Guzzetti F, Ardizzone F (2005) Geomorphologic mapping to assess landslide risk: concepts, methods and applications in the Umbria Region of central Italy. In: Glade T, Anderson M, Crozier MG (eds) Landslide risk assessment. Wiley, Chichester

    Google Scholar 

  • Ritchie AM (1963) Evaluation of rockfall and its control. Highway research board record, 17, Washington

  • Romana M (1985) New adjustment ratings for application of Bieniawski classification to slopes. In: Proceedings of international symposium on the role of rock mechanics, Zacatecas

  • Romana M (1988) Practice of SMR classification for slope appraisal. In: Proceedings of 5th international symposium on landslides. Balkema, Rotterdam

  • Romana M (1991) SMR classification. In: Proceedings of 7th international congress on rock mechanics. Balkema, Rotterdam

  • Romana M, Serón JB, Montalar E (2003) SMR geomechanics classification: application, experience and validation. In: Proceedings of the 10th congress of the international society for rock mechanics (ISRM), pp 1–4

  • Rose BT (2005) Tennessee rockfall management system. Ph.D. thesis, Virginia Polytechnic Institute and State University

  • Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142

    Article  Google Scholar 

  • Rouiller JD, Marro C (1997) Application de la methodologie Matterock a l´evaluation du danger lie aux falaises. Eclogae Geol Helv 90:393–399

    Google Scholar 

  • Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environ Earth Sci 63(1):49–63

    Article  Google Scholar 

  • Russell CP, Santi PM, Humphrey JD (2008) Modification and statistical analysis of the Colorado rockfall hazard rating system. Colorado Department of Transportation, DTD Applied Research and Innovation Branch (No. CDOT-2008-7)

  • Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur Oper Res 48:2–26

    Article  Google Scholar 

  • Saaty TL (2006) Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur J Oper Res 168(2):557–570

    Article  Google Scholar 

  • Santi PM, Russell CP, Higgins JD, Spriet JI (2009) Modification and statistical analysis of the Colorado rockfall hazard rating system. Eng Geol 104(1):55–65

    Article  Google Scholar 

  • Saroglou H, Marinos V, Marinos P, Tsiambaos G (2012) Rockfall hazard and risk assessment: an example from a high promontory at the historical site of Monemvasia, Greece. Natural Hazards Earth Syst Sci 12:1823–1836

    Article  Google Scholar 

  • Senior SA (2003) Ontario rockfall hazard rating system. Field procedures manual. Report draft, Materials Engineering and Research Office, Ontario, p 36

  • Shakoor A, Woodard MJ (2005) Development of a rockfall hazard rating matrix for the state of Ohio. Kent State University, FHWA/OH-2005/005, Kent, Ohio, p 369

  • Singh A (2004) FRHI—a system to evaluate and mitigate rockfall hazard instable rock excavations. J Div Civ Eng Inst Eng (India) 85:62–75

    Google Scholar 

  • Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. Landslides, investigation and mitigation. Transp Res Board Natl Res Counc Spec Rep 247:129–177

    Google Scholar 

  • Spadari M, Giacomini A, Buzzi O, Fityus S, Giani GP (2012) In situ rockfall testing in New South Wales, Australia. Int J Rock Mech Min Sci 49:84–93

    Article  Google Scholar 

  • Stover BK (1992) Highway rockfall research report. Colorado Geological Survey, Department of Natural Resources

  • Turner AK, Jayaprakash GP (2013) Rockfall: characterization and Control. Transportation Research Board Miscellaneous Publication, TR News, 284, Washington

  • Turner AK, Schuster RL (1996) Landslides: investigation and mitigation. Transportation Research Board Special Report 247. National Research Council, Washington

  • UNISDR (2009) Terminology on disaster risk reduction. http://www.unisdr.org/we/inform/terminology

  • Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geol Rundsch 86:404–414

    Article  Google Scholar 

  • Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102(3):112–131

    Article  Google Scholar 

  • Vandewater C, Dunne WM, Mauldon M, Drumm EC, Bateman V (2005) Classifying and assessing the geologic contribution to rockfall hazard. Environ Eng Geosci 11(2):141–154

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslide analysis and control. Transportation Research Board, Special report 176. National Academy Sciences, Washington, DC, pp 11–33

  • Varnes DJ, IAEG—International Association Engineering Geology, Commission on Landslides and other Mass-Movements Landslide (1984) Hazard zonation: a review of principles and practice, the UNESCO Press, Paris

  • Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F, Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011) Rockfall characterisation and structural protection—a review. Nat Hazards Earth Sys 11:2617–2651

    Article  Google Scholar 

  • Whiteside PGD (1986) Discussion on rockfall protection measures. Conference on rock engineering and excavation in an urban environment. Institution of Mining and Metallurgy, Hong Kong

  • Woodard M (2004) Development of a rockfall hazard rating system Matrix for the State of Ohio. PhD dissertation, Kent State University

  • Woodard MJ, Baker MJ, Shakoor A (2005) Development of a rock fall hazard rating matrix for Ohio, USA. In: Proceedings of Geoline, Lyon, France

  • Wyllie DC (1987) Rock slope inventory system. In: Proceedings of the Federal Highway Administration Rockfall Mitigation Seminar FHWA Region 10

  • Wyllie DC (2005) Risk management of rock fall hazards. In: Proceedings of Canadian geotechnical society annual conference, Vancouver

  • Yagi H (2003) Development of assessment method for landslide hazardness by AHP. In: Abstract volume of the 42nd annual meeting of the Japan Landslide Society, pp 209–212

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1–12

    Article  Google Scholar 

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85(3):274–287

    Article  Google Scholar 

  • Yang YJ, Zhang Q (1998) The application of neural networks to rock engineering systems (RES). Int J Rock Mech Min Sci 35(6):727–745

    Article  Google Scholar 

  • Yoshimatsu H, Abe S (2006) A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides 3(2):149–158

    Article  Google Scholar 

  • Youssef AM, Maerz NH (2012) Development, justification, and verification of a rock fall hazard rating system. Bull Eng Geol Environ 71:171–186

    Article  Google Scholar 

  • Zhang LQ, Yang ZF, Liao QL, Chen J (2004) An application of the rock engineering systems (RES) methodology in rockfall hazard assessment on the Chengdu-Lhasa Highway, China. Int J Rock Mech Min Sci 41:833–838

    Article  Google Scholar 

  • Zhao HC, Xu SB, He JS (1986) Analytic hierarchy process. Science and Technology Press, Beijing

    Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Australian Coal Association Research Program (ACARP C23026). The financial support provided by the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering (CGSE) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ferrari.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00603-017-1214-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, F., Giacomini, A. & Thoeni, K. Qualitative Rockfall Hazard Assessment: A Comprehensive Review of Current Practices. Rock Mech Rock Eng 49, 2865–2922 (2016). https://doi.org/10.1007/s00603-016-0918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-016-0918-z

Keywords

Navigation