Skip to main content
Log in

Multiscale Study of the Nonlinear Behavior of Heterogeneous Clayey Rocks Based on the FFT Method

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

A multiscale model based on the fast Fourier transform (FFT) is applied to study the nonlinear mechanical behavior of Callovo-Oxfordian (COx) argillite, a typical heterogeneous clayey rocks. COx argillite is modeled as a three-phase composite with a clay matrix and two types of mineral inclusions. The macroscopic mechanical behavior of argillite samples with different mineralogical compositions are satisfactorily predicted by unified local constitutive models and material parameters. Moreover, the numerical implementation of the FFT-based nonlinear homogenization is easier than direct homogenization, such as the FEM-based homogenization, because it automatically satisfies the periodic boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

\( E_{ij,} \text{ }\varSigma_{ij} \) :

Macroscopic strain and stress tensor

\( \varepsilon_{ij} (\varvec{y}),\sigma_{ij} (\varvec{y}),u_{i} (\varvec{y}) \) :

Microscopic strain tensor, stress tensor and displacement vector

\( \Upomega_{x} ,\Upomega_{y} \) :

Macroscopic and microscopic domain

\( C_{ijkl}^{0} \) :

Isotropic reference stiffness tensor

\( \varvec{\lambda}^{0} \),\( \varvec{\mu}^{0} \) :

Lamé parameters of reference stiffness tensor

\( \Upgamma_{ijkl}^{0} \) :

Green’s operator

\( \upxi \) :

Coordinates in Fourier space

References

  • Abou-Chakra Guéry A, Cormery F, Shao JF, Kondo D (2009) Application of a micromechanical model to cavity excavation analysis in argillite. Int J Rock Mech Min Sci 46(5):905–917

    Article  Google Scholar 

  • Belayachi N, Do DP, Hoxha D (2012) A note on the numerical homogenisation of the mechanical behaviour of an argillaceous rock. Comput Geotech 41:70–78

    Article  Google Scholar 

  • Bornert M, Vales F, Halphen B (2001) Géomicromécanique des argillites du site Meuse/Haute Marne: Extensonmétrie, Report LMS-ANDRA N°BRP0LMS2001-01/A

  • Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49(3):663–671

    Article  Google Scholar 

  • Chiarelli AS, Shao JF, Hoteit N (2003) Modeling of elastoplastic damage behavior of a claystone. Int J Plast 19(1):23–45

    Article  Google Scholar 

  • Delay J, Rebours H, Vinsot A, Robin P (2007) Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France. Phys Chem Earth Part A/B/C 32(1–7):42–57

    Article  Google Scholar 

  • Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244

    Article  Google Scholar 

  • Fish J (2013) Practical multiscaling. Wiley, New Jersey

    Google Scholar 

  • Jiang T, Shao JF (2012) Micromechanical analysis of the nonlinear behavior of porous geomaterials based on the fast Fourier transform. Comput Geotech 46:69–74

    Article  Google Scholar 

  • Jiang T, Abou-Chakra Guéry A, Kondo D, Shao JF (2009) Multi-scale modeling for inelastic behavior of a cohesive geomaterial. Mech Res Commun 36(6):673–681

    Article  Google Scholar 

  • Kaßbohm S, Müller WH, Feßler R (2006) Improved approximations of Fourier coefficients for computing periodic structures with arbitrary stiffness distribution. Comput Mater Sci 37(1–2):90–93

    Article  Google Scholar 

  • Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int J Plast 32–33:59–69

    Article  Google Scholar 

  • Lide DR (2004) CRC handbook of chemistry and physics 2004–2005: a ready-reference book of chemical and physical data. CRC PressI Llc, New York

    Google Scholar 

  • Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109–143

    Article  Google Scholar 

  • Michel JC, Moulinec H, Suquet P (2001) A computational scheme for linear and non-linear composites with arbitrary phase contrast. Int J Num Methods Eng 52(1–2):139–160

    Article  Google Scholar 

  • Miehe C, Schroder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171:387–418

    Article  Google Scholar 

  • Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

    Article  Google Scholar 

  • Ni Y, Chiang MYM (2007) Prediction of elastic properties of heterogeneous materials with complex microstructures. J Mech Phys Solids 55(3):517–532

    Article  Google Scholar 

  • Robinet J (2008) Minéralogie, porosité et diffusion des solutés dans l’argilite du Callovo-Oxfordien de Bure (Meuse, Haute-Marne, France) de l’échelle centimétrique à micrométrique. Université de Poitiers, France

    Google Scholar 

  • Shen WQ, Shao JF, Kondo D, Gatmiri B (2012) A micro–macro model for clayey rocks with a plastic compressible porous matrix. Int J Plast 36:64–85

    Article  Google Scholar 

  • Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155:181–192

    Article  Google Scholar 

  • Yvonnet J, Gonzalez D, He QC (2009) Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials. Comput Methods Appl Mech Eng 198(33–36):2723–2737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, T., Xu, W. & Shao, J. Multiscale Study of the Nonlinear Behavior of Heterogeneous Clayey Rocks Based on the FFT Method. Rock Mech Rock Eng 48, 417–426 (2015). https://doi.org/10.1007/s00603-014-0581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-014-0581-1

Keywords

Navigation