Skip to main content
Log in

Many-Channel Microscopic Model for Resonance Structure in \(^{9}\)Be and \(^{9}\)B: Astrophysical Insights

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

This study presents a novel many-channel microscopic model to describe high-energy resonance states in \(^9\)Be and \(^9\)B, particularly addressing the cosmological lithium problem. The model integrates multiple three-cluster configurations and binary channels, unveiling 18 resonance states in each nucleus. Significant emphasis is placed on understanding resonance states’ impact on astrophysical S-factors, particularly in reactions involving \(^7\)Li, \(^7\)Be, \(^6\)Li, \(^3\)H, \(^3\)He and a deuteron. The results highlight the influence of resonance states and channel coupling on S-factors, offering new insights into nuclear reactions crucial for cosmological inquiries. This comprehensive analysis bridges theoretical predictions with experimental data, enhancing our understanding of nuclear processes in astrophysical contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. R.W. Kavanagh, Protons from deuteron bombardment of \(^{7}\)Be. Nucl. Phys. A 18, 492–501 (1960). https://doi.org/10.1016/0029-5582(60)90419-3

    Article  CAS  Google Scholar 

  2. C. Angulo, E. Casarejos, M. Couder, P. Demaret, P. Leleux, F. Vanderbist, A. Coc, J. Kiener, V. Tatischeff, T. Davinson, A.S. Murphy, N.L. Achouri, N.A. Orr, D. Cortina-Gil, P. Figuera, B.R. Fulton, I. Mukha, E. Vangioni, The \(^{7}Be(d,p)2\alpha \) cross section at big bang energies and the primordial \(^{7}Li\) abundance. Astrophys. J. 630, 105–108 (2005). https://doi.org/10.1086/491732. arXiv:astro-ph/0508454

  3. N. Rijal, I. Wiedenhöver, J.C. Blackmon, M. Anastasiou, L.T. Baby, D.D. Caussyn, P. Höflich, K.W. Kemper, E. Koshchiy, G.V. Rogachev, Measurement of d + \(^{7}\)Be cross sections for big-bang nucleosynthesis. Phys. Rev. Lett. 122(18), 182701 (2019). https://doi.org/10.1103/PhysRevLett.122.182701. arXiv:1808.07893 [nucl-ex]

  4. A. Inoue, A. Tamii, P. Chan, S. Hayakawa, N. Kobayashi, Y. Maeda, K. Nonaka, T. Shima, H. Shimizu, D. Trong Tran, X. Wang, H. Yamaguchi, L. Yang, Z. Yang, Study of the contribution of the \(^{7}\)Be(d, p) reaction to the \(^{7}\)Li problem in the Big-Bang nucleosynthesis. J. Phys: Conf. Ser. 1643, 012049 (2020). https://doi.org/10.1088/1742-6596/1643/1/012049

    Article  CAS  Google Scholar 

  5. E. Leistenschneider, A. Lépine-Szily, M.A.G. Alvarez, D.R. Mendes, R. Lichtenthäler, V.A.P. Aguiar, M. Assunção, R.P. Condori, U.U. da Silva, P.N. de Faria, N. Deshmukh, J.G. Duarte, L.R. Gasques, V. Guimarães, E.L.A. Macchione, M.C. Morais, V. Morcelle, K.C.C. Pires, V.B. Scarduelli, G. Scotton, J.M.B. Shorto, V.A.B. Zagatto, Spectroscopy of high-lying resonances in \(^{9}\)Be by the measurement of (p, p), (p, d), and (p,\(\alpha \)) reactions with a radioactive \(^{8}\)Li beam. Phys. Rev. C 98(6), 064601 (2018). https://doi.org/10.1103/PhysRevC.98.064601

    Article  ADS  CAS  Google Scholar 

  6. M. Paris, G. Hale, A. Hayes-Sterbenz, G. Jungman, R-matrix analysis of reactions in the \(^{9}\)B compound system. Nucl. Data Sheets 120, 184–187 (2014) https://doi.org/10.1016/j.nds.2014.07.041. arXiv:1304.3153 [nucl-th]

  7. B.R. Barrett, P. Navrátil, J.P. Vary, Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131–181 (2013). https://doi.org/10.1016/j.ppnp.2012.10.003

    Article  ADS  CAS  Google Scholar 

  8. N. Michel, W. Nazarewicz, M. Płoszajczak, J. Okołowicz, Gamow shell model description of weakly bound nuclei and unbound nuclear states. Phys. Rev. C 67(5), 054311 (2003) https://doi.org/10.1103/PhysRevC.67.054311. arXiv:nucl-th/0302060 [nucl-th]

  9. N. Michel, M. Płoszajczak, Gamow shell model: the unified theory of nuclear structure and reactions. Lect. Notes Phys. (2021). https://doi.org/10.1007/978-3-030-69356-5

    Article  Google Scholar 

  10. T. Myo, Y. Kikuchi, H. Masui, K. Katō, Recent development of complex scaling method for many-body resonances and continua in light nuclei. Progr. Part. Nucl. Phys. 79, 1–56 (2014) https://doi.org/10.1016/j.ppnp.2014.08.001. arXiv:1410.4356 [nucl-th]

  11. T. Myo, K. Katō, Complex scaling: Physics of unbound light nuclei and perspective. Prog. Theor. Exp. Phys. 2020(12), 12–101 (2020). https://doi.org/10.1093/ptep/ptaa101. arXiv:2007.12172 [nucl-th]

  12. A. Cobis, D.V. Fedorov, A.S. Jensen, Three-body halos. V. Computations of continuum spectra for Borromean nuclei. Phys. Rev. C 58, 1403–1421 (1998). https://doi.org/10.1103/PhysRevC.58.1403

    Article  ADS  CAS  Google Scholar 

  13. V. Vasilevsky, A.V. Nesterov, F. Arickx, J. Broeckhove, Algebraic model for scattering in three-s-cluster systems. II. Resonances in the three-cluster continuum of \(^{6}He\) and \(^{6}Be\). Phys. Rev. C 63(3), 034607–7 (2001). https://doi.org/10.1103/PhysRevC.63.034607. arXiv:nucl-th/0005047

  14. W. Oertzen, Two-center molecular states in \(^{9}\text{ B }\), \(^{9}\text{ Be }\), \(^{10}\text{ Be }\), and \(^{10}\text{ B }\). Z. Phys. A Hadrons Nuclei 354, 37–43 (1996). https://doi.org/10.1007/s002180050010

    Article  ADS  Google Scholar 

  15. Y.A. Lashko, V.S. Vasilevsky, V.I. Zhaba, Many-channel microscopic theory of resonance states and scattering processes in \(^{9}\)Be and \(^{9}\)B. pp. 2310–13979 (2023). https://doi.org/10.48550/arXiv.2310.13979. arXiv:2310.13979 [nucl-th]

  16. Y.A. Lashko, G.F. Filippov, V.S. Vasilevsky, Microscopic three-cluster model of \(^{10}\)Be. Nucl. Phys. A 958, 78–100 (2017). https://doi.org/10.1016/j.nuclphysa.2016.11.004

    Article  ADS  CAS  Google Scholar 

  17. V.S. Vasilevsky, F. Arickx, J. Broeckhove, T.P. Kovalenko, A microscopic three-cluster model with nuclear polarization applied to the resonances of \(^7\)Be and the reaction \(^6\)Li(\(p\),\(^3\)He)\(^4\)He. Nucl. Phys. A 824(1–4), 37–57 (2009). https://doi.org/10.1016/j.nuclphysa.2009.03.011. arXiv:0807.0136

  18. D.R. Thompson, M. Lemere, Y.C. Tang, Systematic investigation of scattering problems with the resonating-group method. Nucl. Phys. A 286, 53–66 (1977). https://doi.org/10.1016/0375-9474(77)90007-0

    Article  ADS  Google Scholar 

  19. I. Reichstein, Y.C. Tang, Study of \(N + \alpha \) system with the resonating-group method. Nucl. Phys. A 158(2), 529–545 (1970). https://doi.org/10.1016/0375-9474(70)90201-0

    Article  ADS  CAS  Google Scholar 

  20. A.D. Duisenbay, N. Kalzhigitov, K. Katō, V.O. Kurmangaliyeva, N. Takibayev, V.S. Vasilevsky, Effects of the Coulomb interaction on parameters of resonance states in mirror three-cluster nuclei. Nucl. Phys. A 996, 121692 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121692. arXiv:1905.07711 [nucl-th]

  21. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller, Energy levels of light nuclei \(A\)=8, 9, 10. Nucl. Phys. A 745, 155–362 (2004). https://doi.org/10.1016/j.nuclphysa.2004.09.059

    Article  ADS  CAS  Google Scholar 

  22. S.Q. Hou, T. Kajino, T.C.L. Trueman, M. Pignatari, Y.D. Luo, C.A. Bertulani, New Thermonuclear rate of \(^{7}\)Li(d, n)2\(^{4}\)He relevant to the cosmological lithium problem. Astrophys. J. 920(2), 145 (2021). https://doi.org/10.3847/1538-4357/ac1a11. arXiv:2105.05470 [astro-ph.CO]

Download references

Acknowledgements

This work received partial support from the Program of Fundamental Research of the Physics and Astronomy Department of the National Academy of Sciences of Ukraine (Project No. 0122U000889). We extend our gratitude to the Simons Foundation for their financial support. Additionally, Y.L. acknowledges the National Institute for Nuclear Physics, Italy, for providing a research grant to support Ukrainian scientists.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and analysis of the results. Victor Vasilevsky wrote the Fortran code, and Victor Zhaba performed the calculations. Figures were prepared by Victor Vasilevsky and Victor Zhaba. The first draft of the manuscript was written by Yuliia Lashko. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Yuliia Lashko.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashko, Y., Vasilevsky, V. & Zhaba, V. Many-Channel Microscopic Model for Resonance Structure in \(^{9}\)Be and \(^{9}\)B: Astrophysical Insights. Few-Body Syst 65, 14 (2024). https://doi.org/10.1007/s00601-024-01881-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01881-w

Navigation