Skip to main content
Log in

Recent Results on Proton Charge Radius and Polarizabilities

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The proton charge radius and nucleon electromagnetic polarizabilities are fundamental properties probing the electromagnetic structure of the nucleons. Proton charge radius is directly related to the proton charge distribution and the nucleon electromagnetic polarizabilities characterize the response of the charge/magnetic constituents inside the nucleon to external electromagnetic fields. A precise understanding of these quantities is crucial not only for understanding how quantum chromodynamics (QCD) works in the non-perturbative QCD region but also for bound state quantum electrodynamics (QED) calculations of atomic energy levels. We discuss the experimental approaches employed in the recent decades to determine the proton charge radius and nucleon electromagnetic polarizabilities. We summarize the present status of the proton charge radius puzzle and polarizabilities measurements. Additionally, we provide prospects for various upcoming experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H. Gao, M. Vanderhaeghen, The proton charge radius. Rev. Mod. Phys. 94, 015002 (2022). https://doi.org/10.1103/RevModPhys.94.015002. arxiv:2105.00571

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. E. Tiesinga, P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2018*. Rev. Mod. Phys. 93, 025010 (2021). https://doi.org/10.1103/RevModPhys.93.025010

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. G.A. Miller, Defining the proton radius: a unified treatment. Phys. Rev. C 99, 035202 (2019). https://doi.org/10.1103/PhysRevC.99.035202. arxiv:1812.02714

    Article  ADS  CAS  Google Scholar 

  4. R. Pohl et al., The size of the proton. Nature 466, 213 (2010). https://doi.org/10.1038/nature09250

    Article  ADS  CAS  PubMed  Google Scholar 

  5. P.J. Mohr, B. Taylor, D. Newell, CODATA recommended values of the fundamental physical constants: 2010*. Rev. Mod. Phys. 84, 1527 (2012). https://doi.org/10.1103/RevModPhys.84.1527

    Article  ADS  CAS  Google Scholar 

  6. J. Arrington, C.D. Roberts, J.M. Zanotti, Nucleon electromagnetic form-factors. J. Phys. G 34, S23 (2007). https://doi.org/10.1088/0954-3899/34/7/S03. ([nucl-th/0611050])

    Article  ADS  CAS  Google Scholar 

  7. C.F. Perdrisat, V. Punjabi, M. Vanderhaeghen, Nucleon electromagnetic form factors. Prog. Part. Nucl. Phys. 59, 694 (2007). https://doi.org/10.1016/j.ppnp.2007.05.001

    Article  ADS  CAS  Google Scholar 

  8. V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, C.E. Carlson, The structure of the nucleon: elastic electromagnetic form factors. Eur. Phys. J. A 51, 79 (2015). https://doi.org/10.1140/epja/i2015-15079-x. arxiv:1503.01452

    Article  ADS  CAS  Google Scholar 

  9. M. Rosenbluth, High energy elastic scattering of electrons on protons. Phys. Rev. 79, 615 (1950). https://doi.org/10.1103/PhysRev.79.615

    Article  ADS  CAS  Google Scholar 

  10. I.A. Qattan et al., Precision Rosenbluth measurement of the proton elastic form factors. Phys. Rev. Lett. 94, 142301 (2005). https://doi.org/10.1103/PhysRevLett.94.142301

    Article  ADS  CAS  PubMed  Google Scholar 

  11. T.W. Donnelly, A.S. Raskin, Considerations of polarization in inclusive electron scattering from nuclei. Ann. Phys. 169, 247 (1986). https://doi.org/10.1016/0003-4916(86)90173-9

    Article  ADS  CAS  Google Scholar 

  12. C. Crawford et al., Measurement of the proton’s electric to magnetic form factor ratio from \(^{1}\vec{H}(\vec{e}, e^{\prime })\). Phys. Rev. Lett. 98, 052301 (2007). https://doi.org/10.1103/PhysRevLett.98.052301

    Article  ADS  CAS  PubMed  Google Scholar 

  13. A. Antognini et al., Proton structure from the measurement of 2S–2P transition frequencies of muonic hydrogen. Science 339, 417 (2013). https://doi.org/10.1126/science.1230016

    Article  ADS  CAS  PubMed  Google Scholar 

  14. W. Xiong et al., A small proton charge radius from an electron–proton scattering experiment. Nature 575, 147 (2019). https://doi.org/10.1038/s41586-019-1721-2

    Article  ADS  CAS  PubMed  Google Scholar 

  15. W. Xiong, A high precision measurement of the proton charge radius at JLab, Ph.D. thesis, Duke University (2020)

  16. J. Brock, G. Gnanvo, P. Hemler, D. Kashy, N. Liyanage, G. Swift et al. (2021)

  17. J. Pierce et al., The PRad windowless gas flow target. Nucl. Instrum. Method A 1003, 165300 (2021). https://doi.org/10.1016/j.nima.2021.165300. arxiv:2103.01749

    Article  CAS  Google Scholar 

  18. X. Yan et al., Robust extraction of the proton charge radius from electron–proton scattering data. Phys. Rev. C 98, 025204 (2018). https://doi.org/10.1103/PhysRevC.98.025204

    Article  ADS  CAS  Google Scholar 

  19. N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman, A.C. Vutha, E.A. Hessels, A measurement of the atomic hydrogen Lamb shift and the proton charge radius. Science 365, 1007 (2019). https://doi.org/10.1126/science.aau7807

    Article  ADS  CAS  PubMed  Google Scholar 

  20. A. Beyer et al., The Rydberg constant and proton size from atomic hydrogen. Science 358, 79 (2017). https://doi.org/10.1126/science.aah6677

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  21. H. Fleurbaey et al., New measurement of the \(1S-3S\) transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018). https://doi.org/10.1103/PhysRevLett.120.183001

    Article  ADS  CAS  PubMed  Google Scholar 

  22. A. Grinin, A. Matveev, D.C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl et al., Two-photon frequency comb spectroscopy of atomic hydrogen. Science 370, 1061 (2020). https://doi.org/10.1126/science.abc7776

    Article  ADS  CAS  PubMed  Google Scholar 

  23. A.D. Brandt, S.F. Cooper, C. Rasor, Z. Burkley, D.C. Yost, A. Matveev, Measurement of the 2S1/2-8D5/2 transition in hydrogen. Phys. Rev. Lett. 128, 023001 (2022). https://doi.org/10.1103/PhysRevLett.128.023001. arxiv:2111.08554

    Article  ADS  CAS  PubMed  Google Scholar 

  24. P.J. Mohr, D.B. Newell, B.N. Taylor, CODATA recommended values of the fundamental physical constants: 2014. J. Phys. Chem. Ref. Data 45, 043102 (2016). https://doi.org/10.1063/1.4954402

    Article  ADS  CAS  Google Scholar 

  25. A1 collaboration, Electric and magnetic form factors of the proton. Phys. Rev. C 90, 015206 (2014). https://doi.org/10.1103/PhysRevC.90.015206

    Article  ADS  CAS  Google Scholar 

  26. I.T. Lorenz, H.-W. Hammer, U.-G. Meissner, The size of the proton: closing in on the radius puzzle. Eur. Phys. J. A 48, 151 (2012). https://doi.org/10.1140/epja/i2012-12151-1

    Article  ADS  CAS  Google Scholar 

  27. G. Lee, J.R. Arrington, R.J. Hill, Extraction of the proton radius from electron-proton scattering data. Phys. Rev. D 92, 013013 (2015). https://doi.org/10.1103/PhysRevD.92.013013. arxiv:2111.08554

    Article  ADS  CAS  Google Scholar 

  28. K. Griffioen, C. Carlson, S. Maddox, Consistency of electron scattering data with a small proton radius. Phys. Rev. C 93, 065207 (2016). https://doi.org/10.1103/PhysRevC.93.065207

    Article  ADS  CAS  Google Scholar 

  29. M. Horbatsch, E.A. Hessels, Evaluation of the strength of electron–proton scattering data for determining the proton charge radius. Phys. Rev. C 93, 015204 (2016). https://doi.org/10.1103/PhysRevC.93.015204. arxiv:1509.05644

    Article  ADS  CAS  Google Scholar 

  30. J.M. Alarcón, D.W. Higinbotham, C. Weiss, Precise determination of the proton magnetic radius from electron scattering data. Phys. Rev. C 102, 035203 (2020). https://doi.org/10.1103/PhysRevC.102.035203. arxiv:2002.05167

    Article  ADS  Google Scholar 

  31. Z.-F. Cui, D. Binosi, C.D. Roberts, S.M. Schmidt, Fresh extraction of the proton charge radius from electron scattering. arxiv:2102.01180

  32. W. Xiong, C. Peng, Proton electric charge radius from lepton scattering, universe. https://doi.org/10.3390/universe9040182arxiv:2302.13818

  33. PRad collaboration, PRad-II: a new upgraded high precision measurement of the proton charge radius. arxiv:2009.10510

  34. Y.-H. Lin, B.-S. Zou, Nuclear deformation effects on charge radius measurements of the proton and deuteron. arxiv:1910.13916

  35. Y.-H. Lin, H.-W. Hammer, U.-G. Meißner, New insights into the nucleon’s electromagnetic structure. Phys. Rev. Lett. 128, 052002 (2022). https://doi.org/10.1103/PhysRevLett.128.052002. arxiv:2109.12961

    Article  ADS  CAS  PubMed  Google Scholar 

  36. MUSE collaboration, The MUon scattering experiment (MUSE) at the Paul Scherrer Institute, PoS NuFACT2018 136 (2018). https://doi.org/10.22323/1.341.0136

  37. E1027 collaboration, The MUSE experiment at PSI: status and plans, PoS NuFact2019 076 (2020). https://doi.org/10.22323/1.369.0076

  38. J. Zhou et al., Advanced extraction of the deuteron charge radius from electron–deuteron scattering data. Phys. Rev. C 103, 024002 (2021). https://doi.org/10.1103/PhysRevC.103.024002. arxiv:2010.09003

    Article  ADS  MathSciNet  CAS  Google Scholar 

  39. J. Zhou, V. Khachatryan, I. Akushevich, H. Gao, A. Ilyichev, C. Peng et al., Lowest-order QED radiative corrections in unpolarized elastic electron–deuteron scattering beyond the ultra-relativistic limit for the proposed deuteron charge radius measurement at Jefferson laboratory. Eur. Phys. J. A 59, 256 (2023). https://doi.org/10.1140/epja/s10050-023-01174-6. arxiv:2307.09680

    Article  ADS  CAS  Google Scholar 

  40. P.P. Martel, Measuring proton spin polarizabilities with polarized compton scattering, Ph.D. thesis, Massachusetts U., Amherst (2013). https://doi.org/10.7275/j1yn-de26

  41. M.C. Birse, J.A. McGovern, Proton polarisability contribution to the Lamb shift in muonic hydrogen at fourth order in chiral perturbation theory. Eur. Phys. J. A 48, 120 (2012). https://doi.org/10.1140/epja/i2012-12120-8. arxiv:1206.3030

    Article  ADS  CAS  Google Scholar 

  42. J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, Cottingham formula and nucleon polarisabilities. Eur. Phys. J. C 75, 375 (2015). https://doi.org/10.1140/epjc/s10052-015-3580-9. arxiv:1506.06747

    Article  ADS  CAS  Google Scholar 

  43. NPLQCD collaboration, Magnetic structure of light nuclei from lattice QCD, Phys. Rev. D 92, 114502 (2015). https://doi.org/10.1103/PhysRevD.92.114502, arxiv:1506.05518

  44. D. Choudhury, A. Nogga, D.R. Phillips, Investigating neutron polarizabilities through Compton scattering on \(^{3}\)He. Phys. Rev. Lett. 98, 232303 (2007). https://doi.org/10.1103/PhysRevLett.98.232303. arxiv:1804.01206

    Article  ADS  CAS  PubMed  Google Scholar 

  45. H.W. Griesshammer, J.A. McGovern, D.R. Phillips, G. Feldman, Using effective field theory to analyse low-energy Compton scattering data from protons and light nuclei. Prog. Part. Nucl. Phys. 67, 841 (2012). https://doi.org/10.1016/j.ppnp.2012.04.003. arxiv:1203.6834

    Article  ADS  CAS  Google Scholar 

  46. J.A. McGovern, D.R. Phillips, H.W. Griesshammer, Compton scattering from the proton in an effective field theory with explicit Delta degrees of freedom. Eur. Phys. J. A 49, 12 (2013). https://doi.org/10.1140/epja/i2013-13012-1. arxiv:1210.4104

    Article  ADS  CAS  Google Scholar 

  47. H.W. Griesshammer, J.A. McGovern, D.R. Phillips, Nucleon polarisabilities at and beyond physical pion masses. Eur. Phys. J. A 52, 139 (2016). https://doi.org/10.1140/epja/i2016-16139-5. arxiv:1511.01952

    Article  ADS  CAS  Google Scholar 

  48. A. Margaryan, B. Strandberg, H.W. Griesshammer, J.A. Mcgovern, D.R. Phillips, D. Shukla, Elastic Compton scattering \(\text{ from}^{3}\)He and the role of the Delta. Eur. Phys. J. A 54, 125 (2018). https://doi.org/10.1140/epja/i2018-12554-x. arxiv:1804.00956

    Article  ADS  CAS  Google Scholar 

  49. COMPTON@MAX-lab collaboration, Measurement of Compton scattering from the deuteron and an improved extraction of the neutron electromagnetic polarizabilities, Phys. Rev. Lett. 113, 262506 (2014). https://doi.org/10.1103/PhysRevLett.113.262506, arxiv:1409.3705

  50. E. Mornacchi, S. Rodini, B. Pasquini, P. Pedroni, First concurrent extraction of the leading-order scalar and spin proton polarizabilities. Phys. Rev. Lett. 129, 102501 (2022). https://doi.org/10.1103/PhysRevLett.129.102501. arxiv:2204.13491

    Article  ADS  CAS  PubMed  Google Scholar 

  51. V.N. Litvinenko, J.M. Madey, High-power inverse compton y-ray source at the duke storage ring, in Time-Resolved Electron and X-ray Diffraction, vol. 2521, pp. 55–77. SPIE (1995)

  52. X. Li et al., Proton Compton scattering from linearly polarized gamma rays. Phys. Rev. Lett. 128, 132502 (2022). https://doi.org/10.1103/PhysRevLett.128.132502. arxiv:2205.10533

    Article  ADS  CAS  PubMed  Google Scholar 

  53. D. Godagama, Elastic and inelastic compton scattering from deuterium at 61 mev

  54. V.O. de León et al., Low-energy Compton scattering and the polarizabilities of the proton. Eur. Phys. J. A 10, 207 (2001). https://doi.org/10.1007/s100500170132

    Article  ADS  Google Scholar 

  55. B.E. MacGibbon, G. Garino, M.A. Lucas, A.M. Nathan, G. Feldman, B. Dolbilkin, Measurement of the electric and magnetic polarizabilities of the proton. Phys. Rev. C 52, 2097 (1995). https://doi.org/10.1103/PhysRevC.52.2097. arxiv:nucl-ex/9507001

    Article  ADS  CAS  Google Scholar 

  56. A2 collaboration, Determination of the scalar polarizabilities of the proton using beam asymmetry \(\Sigma _{3}\) in Compton scattering. Eur. Phys. J. A 53, 14 (2017). https://doi.org/10.1140/epja/i2017-12203-0. arxiv:1804.01206

    Article  CAS  Google Scholar 

  57. A2 Collaboration at MAMI collaboration, Measurement of Compton scattering at MAMI for the extraction of the electric and magnetic polarizabilities of the proton. Phys. Rev. Lett. 128, 132503 (2022). https://doi.org/10.1103/PhysRevLett.128.132503. arxiv:2110.15691

    Article  ADS  Google Scholar 

  58. M.H. Sikora et al., Compton scattering from \(^4\)He at 61 MeV. Phys. Rev. C 96, 055209 (2017). https://doi.org/10.1103/PhysRevC.96.055209

    Article  ADS  Google Scholar 

  59. X. Li et al., Compton scattering from \(^4\)He at the TUNL HI\(\gamma \)S facility. Phys. Rev. C 101, 034618 (2020). https://doi.org/10.1103/PhysRevC.101.034618. arxiv:1912.06915

    Article  ADS  CAS  Google Scholar 

  60. D. Godagama, Elastic and inelastic compton scattering from deuterium at 61 MeV, Ph.D. thesis, Kentucky University (2022). https://doi.org/10.13023/etd.2022.281

  61. M. Preston, Time and energy calibration of large-volume segmented sodium-iodide detectors, Ph.D. thesis, Lund U. (main) (2012)

  62. L.S. Myers et al., Compton scattering from the deuteron below pion-production threshold. Phys. Rev. C 92, 025203 (2015). https://doi.org/10.1103/PhysRevC.92.025203. arxiv:1503.08094

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The work of Haiyan Gao and Jingyi Zhou within the PRad and Compton collaboration is supported by the U.S. Department of Energy, Office of Science, Nuclear Physics under contract DE-FG02-03ER41231.

Author information

Authors and Affiliations

Authors

Contributions

HG was the speaker at the 25th European conference on few-body problems in physics. JZ wrote the main manuscript text based on HG’s presentation. HG reviewed the manuscript and revised the work.

Corresponding author

Correspondence to Jingyi Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

25EFB: 25th European Conference on Few-Body Problems in Physics, July 30–August 4, 2023, Alte Mensa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhou, J. Recent Results on Proton Charge Radius and Polarizabilities. Few-Body Syst 65, 8 (2024). https://doi.org/10.1007/s00601-024-01878-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-024-01878-5

Navigation