Skip to main content
Log in

Spectroscopy of Heavy–Heavy Flavour Mesons and Annihilation Widths of Quarkonia

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Within the framework of nonrelativistic quark–antiquark Cornell potential model formalism, we study the annihilation of heavy quarkonia. We determine their annihilation widths resulting into digluon, dilepton, \(3\gamma \), 3g and \(\gamma gg\) and compare our findings with the available theoretical results and experimental data. We also provide the charge radii and absolute square of radial Schrödinger wave function at zero quark–antiquark separation for heavy quarkonia and \(B_c\) mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. R. Aaij et al., JHEP 07, 123 (2020). https://doi.org/10.1007/JHEP07(2020)123

    Article  ADS  Google Scholar 

  2. A.M. Sirunyan et al., Phys. Rev. Lett. 122(13), 132001 (2019). https://doi.org/10.1103/PhysRevLett.122.132001

    Article  ADS  Google Scholar 

  3. A. Tumasyan, et al., arXiv: 2111.05370 [hep-ph] (2021)

  4. R. Aaij, et al., Natur Phys. 18, 751 (2022). https://doi.org/10.1038/s41567-022-01614-y

  5. R. Aaij et al., Sci. Bull. 65(23), 1983 (2020). https://doi.org/10.1016/j.scib.2020.08.032

    Article  Google Scholar 

  6. Y.R. Liu, H.X. Chen, W. Chen, X. Liu, S.L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019). https://doi.org/10.1016/j.ppnp.2019.04.003

    Article  ADS  Google Scholar 

  7. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.P. Shen, C.E. Thomas, A. Vairo, C.Z. Yuan, Phys. Rept. 873, 1 (2020). https://doi.org/10.1016/j.physrep.2020.05.001

    Article  ADS  Google Scholar 

  8. R.N. Faustov, V.O. Galkin, E.M. Savchenko, Universe 7(4), 94 (2021). https://doi.org/10.3390/universe7040094

    Article  ADS  Google Scholar 

  9. Y. Meng, C. Liu, K.L. Zhang, Phys. Rev. D 102(5), 054506 (2020). https://doi.org/10.1103/PhysRevD.102.054506

    Article  ADS  Google Scholar 

  10. C. Liu, Y. Meng, K.L. Zhang, Phys. Rev. D 102(3), 034502 (2020). https://doi.org/10.1103/PhysRevD.102.034502

    Article  ADS  Google Scholar 

  11. R. Lewis, R. Woloshyn, Phys. Rev. D 85, 114509 (2012). https://doi.org/10.1103/PhysRevD.85.114509

    Article  ADS  Google Scholar 

  12. M. Wurtz, R. Lewis, R. Woloshyn, Phys. Rev. D 92(5), 054504 (2015). https://doi.org/10.1103/PhysRevD.92.054504

    Article  ADS  Google Scholar 

  13. T. Aliev, T. Barakat, S. Bilmis, Nucl. Phys. B 947, 114726 (2019). https://doi.org/10.1016/j.nuclphysb.2019.114726

    Article  Google Scholar 

  14. K. Azizi, J. Süngü, J. Phys. G 46(3), 035001 (2019). https://doi.org/10.1088/1361-6471/aaee21

    Article  ADS  Google Scholar 

  15. Y. Kiyo, Y. Sumino, Phys. Lett. B 730, 76 (2014). https://doi.org/10.1016/j.physletb.2014.01.030

    Article  ADS  Google Scholar 

  16. V. Mateu, P.G. Ortega, D.R. Entem, F. Fernández, Eur. Phys. J. C 79(4), 323 (2019). https://doi.org/10.1140/epjc/s10052-019-6808-2

    Article  ADS  Google Scholar 

  17. N. Brambilla, H.S. Chung, D. Müller, A. Vairo, JHEP 04, 095 (2020). https://doi.org/10.1007/JHEP04(2020)095

    Article  ADS  Google Scholar 

  18. M. Chen, L. Chang, Y. x Liu, Phys. Rev. D 101(5), 056002 (2020). https://doi.org/10.1103/PhysRevD.101.056002

    Article  ADS  Google Scholar 

  19. P.G. Ortega, J. Segovia, D.R. Entem, F. Fernandez, Eur. Phys. J. C 80(3), 223 (2020). https://doi.org/10.1140/epjc/s10052-020-7764-6

    Article  ADS  Google Scholar 

  20. Q. Li, M.S. Liu, L.S. Lu, Q.F. Lü, L.C. Gui, X.H. Zhong, Phys. Rev. D 99(9), 096020 (2019). https://doi.org/10.1103/PhysRevD.99.096020

    Article  ADS  Google Scholar 

  21. D. Ebert, R. Faustov, V. Galkin, Eur. Phys. J. C 71, 1825 (2011). https://doi.org/10.1140/epjc/s10052-011-1825-9

    Article  ADS  Google Scholar 

  22. B. Chen, A. Zhang, J. He, Phys. Rev. D 101(1), 014020 (2020). https://doi.org/10.1103/PhysRevD.101.014020

    Article  ADS  Google Scholar 

  23. A. Badalian, B. Bakker, Phys. Rev. D 100(5), 054036 (2019). https://doi.org/10.1103/PhysRevD.100.054036

    Article  ADS  Google Scholar 

  24. J.K. Chen, Eur. Phys. J. C 78(3), 235 (2018). https://doi.org/10.1140/epjc/s10052-018-5718-z

    Article  ADS  Google Scholar 

  25. D. Molina, M. De Sanctis, C. Fernández-Ramírez, E. Santopinto, Eur. Phys. J. C 80(6), 526 (2020). https://doi.org/10.1140/epjc/s10052-020-8099-z

    Article  ADS  Google Scholar 

  26. E.J. Eichten, C. Quigg, arXiv: 1904.11542 [hep-ph] (2019)

  27. E.J. Eichten, C. Quigg, Phys. Rev. D 99(5), 054025 (2019). https://doi.org/10.1103/PhysRevD.99.054025

    Article  ADS  Google Scholar 

  28. B. Pandya, M. Shah, P.C. Vinodkumar, Eur. Phys. J. C 81(2), 116 (2021). https://doi.org/10.1140/epjc/s10052-021-08901-7

    Article  ADS  Google Scholar 

  29. R. Chaturvedi, A.K. Rai, Int. J. Theor. Phys. 59(11), 3508 (2020). https://doi.org/10.1007/s10773-020-04613-y

    Article  Google Scholar 

  30. R. Chaturvedi, A.K. Rai, N.R. Soni, J.N. Pandya, J. Phys. G 47(11), 115003 (2020). https://doi.org/10.1088/1361-6471/abaa99

    Article  ADS  Google Scholar 

  31. R. Chaturvedi, A. Kumar Rai, Eur. Phys. J. Plus 133(6), 220 (2018). https://doi.org/10.1140/epjp/i2018-12044-8

    Article  Google Scholar 

  32. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Phys. Rev. D 95(7), 074002 (2017). https://doi.org/10.1103/PhysRevD.95.074002

    Article  ADS  Google Scholar 

  33. W.J. Deng, H. Liu, L.C. Gui, X.H. Zhong, Phys. Rev. D 95(3), 034026 (2017). https://doi.org/10.1103/PhysRevD.95.034026

    Article  ADS  Google Scholar 

  34. J. Segovia, P.G. Ortega, D.R. Entem, F. Fernández, Phys. Rev. D 93(7), 074027 (2016). https://doi.org/10.1103/PhysRevD.93.074027

    Article  ADS  Google Scholar 

  35. T. Bhavsar, M. Shah, P.C. Vinodkumar, Eur. Phys. J. C 78(3), 227 (2018). https://doi.org/10.1140/epjc/s10052-018-5694-3

    Article  ADS  Google Scholar 

  36. J.N. Pandya, N.R. Soni, N. Devlani, A.K. Rai, Chin. Phys. C 39(12), 123101 (2015). https://doi.org/10.1088/1674-1137/39/12/123101

    Article  ADS  Google Scholar 

  37. N.R. Soni, B.R. Joshi, R.P. Shah, H.R. Chauhan, J.N. Pandya, Eur. Phys. J. C 78(7), 592 (2018). https://doi.org/10.1140/epjc/s10052-018-6068-6

    Article  ADS  Google Scholar 

  38. E. Eichten, K. Gottfried, T. Kinoshita, J.B. Kogut, K. Lane, T.M. Yan, Phys. Rev. Lett. 34, 369 (1975). https://doi.org/10.1103/PhysRevLett.34.369. [Erratum: Phys. Rev. Lett. 36, 1276 (1976)]

  39. E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, T.M. Yan, Phys. Rev. Lett. 36, 500 (1976). https://doi.org/10.1103/PhysRevLett.36.500

    Article  ADS  Google Scholar 

  40. E. Eichten, K. Gottfried, T. Kinoshita, K. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978). https://doi.org/10.1103/PhysRevD.17.3090. [Erratum: Phys. Rev. D 21, 313 (1980)]

  41. W. Lucha, F.F. Schoberl, Int. J. Mod. Phys. C 10, 607 (1999). https://doi.org/10.1142/S0129183199000450

    Article  ADS  Google Scholar 

  42. M.B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008). https://doi.org/10.1016/j.ppnp.2008.02.001

    Article  ADS  Google Scholar 

  43. R. Aaij et al., Phys. Rev. Lett. 122(23), 232001 (2019). https://doi.org/10.1103/PhysRevLett.122.232001

    Article  ADS  Google Scholar 

  44. R. Aaij et al., Phys. Rev. D 95(3), 032005 (2017). https://doi.org/10.1103/PhysRevD.95.032005

    Article  ADS  Google Scholar 

  45. R. Aaij et al., Phys. Rev. Lett. 113(15), 152003 (2014). https://doi.org/10.1103/PhysRevLett.113.152003

    Article  ADS  Google Scholar 

  46. R. Aaij et al., Phys. Rev. D 87(11), 112012 (2013). https://doi.org/10.1103/PhysRevD.87.112012. [Addendum: Phys. Rev. D 89, 019901 (2014)]

  47. A.K. Rai, B. Patel, P.C. Vinodkumar, Phys. Rev. C 78, 055202 (2008). https://doi.org/10.1103/PhysRevC.78.055202

    Article  ADS  Google Scholar 

  48. A.K. Rai, J.N. Pandya, P.C. Vinodkumar, Eur. Phys. J. A 38, 77 (2008). https://doi.org/10.1140/epja/i2008-10639-9

    Article  ADS  Google Scholar 

  49. R. Van Royen, V.F. Weisskopf, Nuovo Cim. A 50, 617 (1967). https://doi.org/10.1007/BF02823542. [Erratum: Nuovo Cim. A51, 583 (1967)]

  50. W. Kwong, P.B. Mackenzie, R. Rosenfeld, J.L. Rosner, Phys. Rev. D 37, 3210 (1988). https://doi.org/10.1103/PhysRevD.37.3210

    Article  ADS  Google Scholar 

  51. W. Kwong, J.L. Rosner, Phys. Rev. D 38, 279 (1988). https://doi.org/10.1103/PhysRevD.38.279

    Article  ADS  Google Scholar 

  52. P.C. Vinodkumar, J.N. Pandya, V.M. Bannur, S.B. Khadkikar, Eur. Phys. J. A 4, 83 (1999). https://doi.org/10.1007/s100500050206

    Article  ADS  Google Scholar 

  53. J.N. Pandya, P.C. Vinodkumar, Pramana 57, 821 (2001). https://doi.org/10.1007/s12043-001-0031-y

    Article  ADS  Google Scholar 

  54. V. Kher, A.K. Rai, Chin. Phys. C 42(8), 083101 (2018). https://doi.org/10.1088/1674-1137/42/8/083101

    Article  ADS  Google Scholar 

  55. D. Besson et al., Phys. Rev. D 78, 032012 (2008). https://doi.org/10.1103/PhysRevD.78.032012

    Article  ADS  Google Scholar 

  56. M. Ablikim et al., Phys. Rev. D 87(3), 032003 (2013). https://doi.org/10.1103/PhysRevD.87.032003

    Article  ADS  Google Scholar 

  57. A. Bradley, A. Khare, Z. Phys. C 8, 131 (1981). https://doi.org/10.1007/BF01547876

    Article  ADS  Google Scholar 

  58. M. Tanabashi et al., Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

J.N.P. acknowledges financial support from University Grants Commission of India under Major Research Project F. No. 42-775/2013(SR) and DST-FIST (SR/FST/PS-II/2017/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nakul R. Soni.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, N.R., Parekh, R.M., Patel, J.J. et al. Spectroscopy of Heavy–Heavy Flavour Mesons and Annihilation Widths of Quarkonia. Few-Body Syst 63, 77 (2022). https://doi.org/10.1007/s00601-022-01778-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01778-6

Navigation