Skip to main content
Log in

Understanding Effect of Tensor Interactions on Structure of Light Atomic Nuclei

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

For more than 50 years after the birth of the nuclear shell model, nuclear physics seemed to be spared the trouble of confronting the fundamental issue in nuclear structure: How do the nucleon-nucleon interactions, for instance, the realistic ones constructed from nucleon-nucleon scattering data, influence or even dictate the structure of atomic nuclei? However, the observations of the evolution of shell structure in nuclei far from the stability line expose the need to understand the effects of the nucleon-nucleon interactions. The successful measurements of high-momentum nucleons from correlated nucleon pairs, which arise naturally from the nucleon-nucleon interactions such as the tensor interactions, in nuclei suggest the possibility to study their effects. Here, we report on experimental evidence for the \(Z=6\) subshell closure in neutron-rich carbon isotopes and observations of the effect of tensor interactions in \(^{16}\)O via high-momentum-transfer neutron picked-up reactions. Providing a brief summary of the recent developments, we introduce our future plans to study the effect of tensor interactions on the shell evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Unless otherwise stated, the short-range interactions are referred to as the repulsive hard-core interactions in this paper.

References

  1. H. Yukawa, On the interaction of elementary particles I. Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    MATH  Google Scholar 

  2. N. Kemmer, Nature of the nuclear field. Nature 141, 116 (1938)

    Article  MATH  ADS  Google Scholar 

  3. H. Yukawa, S. Sakata, M. Taketani, On the interaction of elementary particles III. Proc. Phys. Math. Soc. Jpn. 20, 319 (1935)

    MATH  Google Scholar 

  4. M. Goeppert-Mayer, On closed shells in nuclei II. Phys. Rev. 75, 1969 (1949)

    Article  ADS  Google Scholar 

  5. O. Haxel, J.H.D. Jensen, H.E. Suess, On the “magic numbers” in nuclear structure. Phys. Rev. 75, 1766 (1949)

  6. O. Sorlin, M.-G. Porquet, Nuclear magic numbers: new features far from stability. Prog. Part. Nucl. Phys. 61, 602 (2008)

    Article  ADS  Google Scholar 

  7. T. Otsuka, T. Suzuki et al., Evolution of nuclear shells due to the tensor force. Phys. Rev. Lett. 95, 232502 (2005)

    Article  ADS  Google Scholar 

  8. S.C. Pieper, V.R. Pandharipande, Origins of spin-orbit splitting in 15 N. Phys. Rev. Lett. 70, 2541 (1993)

    Article  ADS  Google Scholar 

  9. R. Schiavilla, R.B. Wiringa, S.C. Pieper, J. Carlson, Tensor forces and the ground-state structure of nuclei. Phys. Rev. Lett. 98, 132501 (2007)

    Article  ADS  Google Scholar 

  10. T. Neff, H. Feldmeier, Tensor correlations in the unitary correlation operator method. Nucl. Phys. A 713, 311 (2003)

    Article  MATH  ADS  Google Scholar 

  11. D.T. Tran, H.J. Ong et al., Evidence for prevalent \(Z=6\) magic number in neutron-rich carbon isotopes. Nat. Commun. 9, 1594 (2018)

    Article  Google Scholar 

  12. H.J. Ong, I. Tanihata et al., Probing effect of tensor interactions in 16 O via (p, d) reaction. Phys. Lett. B 725, 277 (2013)

    Article  ADS  Google Scholar 

  13. S. Terashima, L. Yu et al., Dominance of tensor correlations in high-momentum nucleon pairs studied by (p, pd) Reaction. Phys. Rev. Lett. 121, 242501 (2018)

    Article  ADS  Google Scholar 

  14. M. Goeppert-Mayer, The shell model. Physics 20, 1679 (1963)

    Google Scholar 

  15. Y. Fujiwara, H. Horiuchi et al., Comprehensive study of alpha-nuclei. Prog. Theor. Phys. Suppl. 68, 29 (1980)

    Article  ADS  Google Scholar 

  16. W. von Oertzen, Dimers based on the \(\alpha +\alpha \) potential and chain states of carbon isotopes. Z. Phys. A 357, 355 (1997)

    Google Scholar 

  17. T. Suhara, Y. Kanada-En’yo, Effects of \(\alpha \)-cluster breaking on \(3\alpha \)-cluster structures in \(^{12}\)C. Phys. Rev. C 91, 024315 (2015)

  18. B.A. Brown, The nuclear shell model towards the drip lines. Prog. Part. Nucl. Phys. 47, 517 (2001)

    Article  ADS  Google Scholar 

  19. N. Imai, H.J. Ong et al., Anomalously hindered \(E2\) strength \(B(E2;2_1^+\rightarrow 0_{{\rm gs}}^+)\) in \(^{16}\text{ C }\). Phys. Rev. Lett. 92, 062501 (2004)

    Article  Google Scholar 

  20. M. Wiedeking, P. Fallon et al., Lifetime measurement of the first excited \(2^+\) state in \(^{16}\text{ C }\). Phys. Rev. Lett. 100, 152501 (2008)

    Article  Google Scholar 

  21. H.J. Ong, N. Imai et al., Lifetime measurements of first excited states in \(^{16,18}\text{ C }\). Phys. Rev. C 78, 014308 (2008)

    Article  Google Scholar 

  22. R. Fujimoto, Shell Model Description of Light Unstable Nuclei (The University of Tokyo, Tokyo, 2003)

    Google Scholar 

  23. T. Shimoda, H. Miyatake, S. Morinobu, Design study of the secondary-beam line at RCNP. Nucl. Instrum. Methods B 70, 320 (1992)

    Article  ADS  Google Scholar 

  24. H.J. Ong, Nuclear physics frontier at RCNP. AIP Conf. Proc. 1588, 146 (2014)

    Article  ADS  Google Scholar 

  25. D.T. Tran, H.J. Ong et al., Charge-changing cross-section measurements of \(^{12-16}\text{ C }\) at around \(45A\) MeV and development of a Glauber model for incident energies \(10A\)-\(2100A\) MeV. Phys. Rev. C 94, 064604 (2016)

    Article  Google Scholar 

  26. S. Terashima, I. Tanihata et al., Proton radius of 14 Be from measurement of charge-changing cross sections. Prog. Theor. Exp. Phys 101D02(2014)

  27. A. Estrade, R. Kanungo et al., Proton radii of \(^{12-17}\text{ B }\) define a thick neutron surface in \(^{17}\text{ B }\). Phys. Rev. Lett. 113, 132501 (2014)

    Google Scholar 

  28. R. Kanungo, W. Horiuchi et al., Proton distribution radii of \(^{12-19}\text{ C }\) illuminate features of neutron halos. Phys. Rev. Lett. 117, 102501 (2016)

    Article  Google Scholar 

  29. A. Ekstrom, G.R. Jansen et al., Accurate nuclear radii and binding energies from chiral interaction. Phys. Rev. C 91, 051301(R) (2015)

    Article  ADS  Google Scholar 

  30. A. Ekstrom, G. Baardsen et al., Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. Phys. Rev. Lett. 110, 192502 (2013)

    Article  ADS  Google Scholar 

  31. I. Angeli, K.P. Marinova, Table of experimental nuclear ground state charge radii: an update. At. Data Nucl. Data Tables 99, 69 (2013)

    Article  ADS  Google Scholar 

  32. B. Pritychenko, M. Birch, B. Singh, M. Horoi, Tables of \(E2\) transition probabilities from the first \(2^+\) states in even-even nuclei. At. Data Nucl. Data Tables 107, 1 (2016)

    Article  Google Scholar 

  33. M. Wang, G. Audi et al., The AME2016 atomic mass evaluation. Chin. Phys. C 41, 030003 (2017)

    Article  ADS  Google Scholar 

  34. H.R. Collard, L.R.B. Elton, R. Hofstadter, Nuclear Radii 2 (Springer, Berlin, 1967)

    Google Scholar 

  35. E. Piasetzky, M. Sargsian et al., Evidence for strong dominance of proton-neutron correlations in nuclei. Phys. Rev. Lett. 97, 162504 (2006)

    Article  ADS  Google Scholar 

  36. R. Subedi, R. Shneor et al., Probing cold dense nuclear matter. Science 320, 1476 (2008)

    Article  ADS  Google Scholar 

  37. O. Hen, G.A. Miller, E. Piasetzky, L.B. Weinstein, Nucleon-nucleon correlations, short-lived excitations and the quarks within. Rev. Mod. Phys. 89, 045002 (2017)

    Article  ADS  Google Scholar 

  38. M. Duer, O. Hen et al., Probing high-momentum protons and neutrons in neutron-rich nuclei. Nature 560, 617 (2018)

    Article  Google Scholar 

  39. J.L. Snelgrove, E. Kashy, Phys. Rev. 187, 1246 (1969)

    Article  ADS  Google Scholar 

  40. M. Fujiwara, H. Akimune et al., Magnetic spectrometer Grand Raiden. Nucl. Instrum. Methods A 422, 484 (1999)

    Article  ADS  Google Scholar 

  41. P.G. Roos, S.M. Smith et al., Nucl. Phys. A 255, 187 (1975)

    Article  ADS  Google Scholar 

  42. J.K.P. Lee, S.K. Mark et al., Nucl. Phys. A 106, 357 (1968)

    Article  ADS  Google Scholar 

  43. R. Abegg, D.A. Hutcheon et al., Phys. Rev. C 39, 65 (1989)

    Article  ADS  Google Scholar 

  44. G.R. Smith, J.R. Shepard et al., Phys. Rev. C 30, 593 (1984)

    Article  ADS  Google Scholar 

  45. M. Yahiro, K. Ogata et al., Prog. Theo. Exp. Phys. 01A206, 196 (2012)

    Google Scholar 

  46. T. Myo, S. Sugimoto et al., Prog. Theo. Phys. 117, 257 (2007)

    Article  ADS  Google Scholar 

  47. C.L. Guo, Probing effects of tensor interactions in nuclei via \(^{16}\)O and \(^{12}\)C(p, d) reaction, PhD thesis, Beihang Univ. (2016); X. Wang, Studying the high-momentum neutron in nuclei by \(^{16}\)O(p,d) transfer reactions—Search for the effect of tensor interactions, Master’s Thesis, Osaka University (2020); X. Wang, H. J. Ong et al., in preparation

  48. L. Yu, S. Terashima et al., Multi-layer plastic scintillation detector for intermediate- and high-energy neutrons with n-\(\gamma \) discrimination capability. Nucl. Instrum. Methods A 866, 118 (2017)

    Article  Google Scholar 

  49. T. Neff, H. Feldmeier, W. Horiuchi, Short-range correlations in nuclei with similarity renormalization group transformations. Phys. Rev. C 92, 024003 (2015)

    Article  ADS  Google Scholar 

  50. S. Cohen, D. Kurath, Two-nucleon transfer in the 1\(p\) shell. Nucl. Phys. A 141, 145 (1970)

    Article  Google Scholar 

  51. J.Y. Grossiord, M. Bedjidian et al., (p, pd), (p, pt) and (\(\text{ p },\text{ p}^3\text{ He }\)) reactions on \(^{12}\text{ C }\) and \(^{16}\text{ O }\) at 75 MeV. Phys. Rev. C 15, 843 (1977)

    Article  Google Scholar 

  52. J.C. Yang, J.W. Xia et al., High Intensity heavy ion Accelerator Facility (HIAF) in China. Nucl. Instrum. Methods B 317, 263 (2013)

    Article  ADS  Google Scholar 

  53. H. Geissel, H. Weick et al., The Super-FRS project at GSI. Nucl. Instrum. Methods B 204, 71 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks the collaborators of the RCNP-E314, GSI-S395, RCNP-E372, RCNP-E396, RCNP-E443, GSI-S436 and CYRIC-134-930-15 experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Ong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, H.J. Understanding Effect of Tensor Interactions on Structure of Light Atomic Nuclei. Few-Body Syst 62, 86 (2021). https://doi.org/10.1007/s00601-021-01668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01668-3

Navigation