Skip to main content
Log in

Four-body Calculation of Inelastic Scattering Cross Sections of Positronium–Antihydrogen Collision

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We overview our recent calculations of scattering cross sections of positronium–antihydrogen collisions. We discuss the cross sections calculated in the vicinity of the four-body resonances of \(\bar{\mathrm {H}}\mathrm {Ps}\) and above the energy threshold for the formation of the antihydrogen positive ions (\(\bar{\mathrm {H}}^+\)). In the former energy region where a Rydberg series of resonances dominated by the \(\bar{\mathrm {H}}^+\)-\(\hbox {e}^-\) interaction appears, we show a good agreement between the resonant profiles in the cross sections and the resonance energies calculated by the complex coordinate rotation method. \(\bar{\mathrm {H}}^+\) production cross sections near the threshold energy are reported for the positronium being initially in the (nl) states with \(n\le 3\), together with all competing elastic/inelastic cross sections. Comparison of our results with the latest continuum distorted wave final state calculation is presented. A qualitative discrepancy concerning the dependence of cross sections on the angular momentum of Ps is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Amoretti et al., Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  2. Y. Enomoto et al., Phys. Rev. Lett. 105, 243401 (2010)

    Article  ADS  Google Scholar 

  3. The ALPHA Collaboration, Nat. Phys. 7, 558 (2011)

    Article  Google Scholar 

  4. N. Kuroda et al., Nat. Commun. 5, 4089 (2014)

    Article  Google Scholar 

  5. E. Widmann et al., Hyperfine Interact. 240, 5 (2018)

    Article  ADS  Google Scholar 

  6. B. Kolbinger et al., EPJ Web Conf. 181, 01003 (2018)

    Article  Google Scholar 

  7. C. Malbrunot et al., Philos. Trans. R. Soc. A 376, 20170273 (2018)

    Article  ADS  Google Scholar 

  8. M. Ahmadi et al., Nature 557, 71 (2018)

    Article  ADS  Google Scholar 

  9. M. Ahmadi et al., Nature 541, 506 (2016)

    Article  ADS  Google Scholar 

  10. M. Ahmadi et al., Nature 548, 66 (2017)

    Article  ADS  Google Scholar 

  11. M. Ahmadi et al., Nature 561, 211 (2018)

    Article  ADS  Google Scholar 

  12. C.L. Cesar et al., AIP Conf. Proc. 770, 33 (2005)

    Article  ADS  Google Scholar 

  13. The ALPHA Collaboration, C. Amole, et al., Nature Commun. 4, 1785 (2013)

  14. P. Indelicato et al., Hyperfine Interact. 228, 141 (2014)

    Article  ADS  Google Scholar 

  15. P. Pérez et al., Hyperfine Interact. 233, 21 (2015)

    Article  ADS  Google Scholar 

  16. P. Pérez, Y. Sacquin, Classical Quant. Grav. 29, 184008 (2012)

    Article  ADS  Google Scholar 

  17. Y. Sacquin, Eur. Phys. J. D 68, 31 (2014)

    Article  ADS  Google Scholar 

  18. A. Kellerbauer et al., Nucl. Instrum. Meth. Phys. Res. B 266, 351 (2008)

    Article  ADS  Google Scholar 

  19. P. Scampoli, J. Storey, Mod. Phys. Lett. A 29, 1430017 (2014)

    Article  ADS  Google Scholar 

  20. A. Knecht et al., Hyperfine Interact. 228, 121 (2014)

    Article  ADS  Google Scholar 

  21. M. Kimura et al., J. Phys.: Conf. Ser. 631, 012047 (2015)

    Google Scholar 

  22. C. Evans et al., EPJ Web Conf. 182, 02040 (2018)

    Article  Google Scholar 

  23. C. Amsler et al., Commun. Phys. 4, 19 (2021)

    Article  Google Scholar 

  24. M.T. McAlinden, F.G.R.S. MacDonald, H.R.J. Walters, Can. J. Phys. 74, 434 (1996)

    Article  ADS  Google Scholar 

  25. S.K. Adhikari, Nucl. Instrum. Methods Phys. Res. B 192, 74 (2002)

    Article  ADS  Google Scholar 

  26. I.I. Fabrikant, G.F. Gribakin, Phys. Rev. A 90, 052717 (2014)

    Article  ADS  Google Scholar 

  27. I.I. Fabrikant, G.F. Gribakin, Phys. Rev. Lett. 112, 243201 (2014)

    Article  ADS  Google Scholar 

  28. R.S. Wilde, I.I. Fabrikant, J. Phys.: Conf. Ser. 1412, 052011 (2020)

    Google Scholar 

  29. R.J. Drachman, S.K. Houston, Phys. Rev. A 14, 894 (1976)

    Article  ADS  Google Scholar 

  30. S.K. Adhikari, P. Mandal, J. Phys. B: At. Mol. Opt. Phys. 33, L761 (2000)

    Article  ADS  Google Scholar 

  31. S.K. Adhikari, Phys. Rev. A 63, 054502 (2001)

    Article  ADS  Google Scholar 

  32. S.K. Adhikari, P. Mandal, J. Phys. B: At. Mol. Opt. Phys. 34, L187 (2001)

    Article  ADS  Google Scholar 

  33. P.K. Biswas, J. Phys. B: At. Mol. Opt. Phys. 34, 4831 (2001)

    Article  ADS  Google Scholar 

  34. J.E. Blackwood, M.T. McAlinden, H.R.J. Walters, Phys. Rev. A 65, 030502 (2002)

    Article  ADS  Google Scholar 

  35. I.A. Ivanov, J. Mitroy, K. Varga, Phys. Rev. A 65, 032703 (2002)

    Article  ADS  Google Scholar 

  36. P.V. Reeth, J.W. Humberston, J. Phys. B: At. Mol. Opt. Phys. 36, 1923 (2003)

    Article  ADS  Google Scholar 

  37. J.Y. Zhang, J. Mitroy, Phys. Rev. A 78, 012703 (2008)

    Article  ADS  Google Scholar 

  38. D. Woods, S.J. Ward, P. Van Reeth, Phys. Rev. A 92, 022713 (2015)

    Article  ADS  Google Scholar 

  39. M.S. Wu, J.Y. Zhang, Y. Qian, K. Varga, U. Schwingenschlögl, Z.C. Yan, Phys. Rev. A 103, 022817 (2021)

    Article  ADS  Google Scholar 

  40. S.J. Brawley, S. Armitage, J. Beale, D.E. Leslie, A.I. Williams, G. Laricchia, Science 330, 789 (2010)

    Article  ADS  Google Scholar 

  41. R.S. Wilde, I.I. Fabrikant, Phys. Rev. A 97, 052708 (2018)

    Article  ADS  Google Scholar 

  42. J.Y. Zhang, M.S. Wu, Y. Qian, X. Gao, Y.J. Yang, K. Varga, Z.C. Yan, U. Schwingenschlögl, Phys. Rev. A 100, 032701 (2019)

    Article  ADS  Google Scholar 

  43. M.S. Wu, J.Y. Zhang, X. Gao, Y. Qian, H.H. Xie, K. Varga, Z.C. Yan, U. Schwingenschlögl, Phys. Rev. A 101, 042705 (2020)

    Article  ADS  Google Scholar 

  44. A.R. Swann, D.B. Cassidy, A. Deller, G.F. Gribakin, Phys. Rev. A 93, 052712 (2016)

    Article  ADS  Google Scholar 

  45. S. Roy, R. Biswas, C. Sinha, Phys. Rev. A 71, 044701 (2005)

    Article  ADS  Google Scholar 

  46. P. Froelich, T. Yamashita, Y. Kino, S. Jonsell, E. Hiyama, K. Piszczatowski, Hyperfine Interact. 240, 46 (2019)

    Article  ADS  Google Scholar 

  47. T. Yamashita, Y. Kino, E. Hiyama, K. Piszczatowski, S. Jonsell, P. Froelich, JJAP Conf. Proc. (accepted)

  48. T. Yamashita, Y. Kino, E. Hiyama, K. Piszczatowski, S. Jonsell, P. Froelich, J. Phys.: Conf. Ser. 1412, 052012 (2020)

    Google Scholar 

  49. T. Yamashita, Y. Kino, E. Hiyama, S. Jonsell, P. Froelich, New J. Phys. 23, 012001 (2021)

    Article  ADS  Google Scholar 

  50. P. Comini, P.A. Hervieux, New J. Phys. 15, 095022 (2013)

    Article  ADS  Google Scholar 

  51. P. Comini, P.A. Hervieux, J. Phys.: Conf. Ser. 443, 012007 (2013)

    Google Scholar 

  52. P. Comini, P.A. Hervieux, F. Biraben, Hyperfine Interact. 228, 159 (2014)

    Article  ADS  Google Scholar 

  53. P. Comini, P.A. Hervieux, K. Lévêque-Simon, New J. Phys. 23, 029501 (2021)

    Article  ADS  Google Scholar 

  54. R.G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  55. E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003)

    Article  ADS  Google Scholar 

  56. E. Hiyama, Prog. Theo. Exp. Phys. 2012 (2012)

  57. E. Hiyama, M. Kamimura, Front. Phys. 13, 132106 (2018)

    Article  ADS  Google Scholar 

  58. J. Zhao, R.M. Corless, Appl. Math. Comput. 177, 271 (2006)

    MathSciNet  Google Scholar 

  59. Z.C. Yan, Y.K. Ho, Phys. Rev. A 84, 034503 (2011)

    Article  ADS  Google Scholar 

  60. J.E. Blackwood, M.T. McAlinden, H.R.J. Walters, Phys. Rev. A 65, 032517 (2002)

    Article  ADS  Google Scholar 

  61. Y. Ho, Phys. Rep. 99, 1 (1983)

    Article  ADS  Google Scholar 

  62. E.P. Wigner, Phys. Rev. 73, 1002 (1948)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Konrad Piszczatowski (a post-doctoral visitor at the Department of Chemistry, Uppsala University from the Quantum Chemistry Laboratory, Warsaw University) for his contribution to code development and for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuma Yamashita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

T.Y. would like to thank JSPS KAKENHI Grant Number JP20K14381, Y.K. would like to thank JSPS KAKENHI Grant Number 17K05592 and 18H05461, S.J. would like to thank the Swedish Research Council (VR) for financial supports. The computation was conducted on the supercomputers ITO at Kyushu University, Flow at Nagoya University and HOKUSAI at RIKEN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamashita, T., Kino, Y., Hiyama, E. et al. Four-body Calculation of Inelastic Scattering Cross Sections of Positronium–Antihydrogen Collision. Few-Body Syst 62, 81 (2021). https://doi.org/10.1007/s00601-021-01661-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01661-w

Navigation