Skip to main content
Log in

Quark Propagator in Minkowski Space

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The analytic structure of the quark propagator in Minkowski space is more complex than in Euclidean space due to the possible existence of poles and branch cuts at timelike momenta. These singularities impose enormous complications on the numerical treatment of the nonperturbative Dyson–Schwinger equation for the quark propagator. Here we discuss a computational method that avoids most of these complications. The method makes use of the spectral representation of the propagator and of its inverse. The use of spectral functions allows one to handle in exact manner poles and branch cuts in momentum integrals. We obtain model-independent integral equations for the spectral functions and perform their renormalization by employing a momentum-subtraction scheme. We discuss an algorithm for solving numerically the integral equations and present explicit calculations in a schematic model for the quark-gluon scattering kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Tanabashi et al., Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001

    Article  ADS  Google Scholar 

  2. H. Gies, Lect. Notes Phys. 852, 287 (2012). https://doi.org/10.1007/978-3-642-27320-9_6

    Article  ADS  MathSciNet  Google Scholar 

  3. I.C. Cloet, C.D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014). https://doi.org/10.1016/j.ppnp.2014.02.001

    Article  ADS  Google Scholar 

  4. A.C. Aguilar, D. Binosi, J. Papavassiliou, Front. Phys. (Beijing) 11(2), 111203 (2016). https://doi.org/10.1007/s11467-015-0517-6

    Article  Google Scholar 

  5. G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer, C.S. Fischer, Prog. Part. Nucl. Phys. 91, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.07.001

    Article  ADS  Google Scholar 

  6. T. Horn, C.D. Roberts, J. Phys. G43(7), 073001 (2016). https://doi.org/10.1088/0954-3899/43/7/073001

    Article  ADS  Google Scholar 

  7. C.S. Fischer, Prog. Part. Nucl. Phys. 105, 1 (2019). https://doi.org/10.1016/j.ppnp.2019.01.002

    Article  ADS  Google Scholar 

  8. A.G. Williams, G. Krein, C.D. Roberts, Ann. Phys. 210, 464 (1991). https://doi.org/10.1016/0003-4916(91)90051-9

    Article  ADS  Google Scholar 

  9. G. Krein, C.D. Roberts, A.G. Williams, Int. J. Mod. Phys. A 7, 5607 (1992). https://doi.org/10.1142/S0217751X92002544

    Article  ADS  Google Scholar 

  10. V. Sauli, J. Adam Jr., Phys. Rev. D 67, 085007 (2003). https://doi.org/10.1103/PhysRevD.67.085007

    Article  ADS  Google Scholar 

  11. V. Sauli, J High Energy Phys (JHEP) 02, 001 (2003). https://doi.org/10.1088/1126-6708/2003/02/001

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Sauli, Few Body Syst. 39, 45 (2006). https://doi.org/10.1007/s00601-006-0156-0

    Article  ADS  Google Scholar 

  13. V. Sauli, J. Adam Jr., P. Bicudo, Phys. Rev. D 75, 087701 (2007). https://doi.org/10.1103/PhysRevD.75.087701

    Article  ADS  Google Scholar 

  14. E.P. Biernat, F. Gross, M.T. Peña, A. Stadler, Few Body Syst. 55, 705 (2014). https://doi.org/10.1007/s00601-014-0863-x

    Article  ADS  Google Scholar 

  15. V. Sauli, J. Phys. G39, 035003 (2012). https://doi.org/10.1088/0954-3899/39/3/035003

    Article  ADS  Google Scholar 

  16. E.P. Biernat, F. Gross, T. Peña, A. Stadler, Phys. Rev. D 89(1), 016005 (2014). https://doi.org/10.1103/PhysRevD.89.016005

    Article  ADS  Google Scholar 

  17. F. Siringo, Phys. Rev. D 94(11), 114036 (2016). https://doi.org/10.1103/PhysRevD.94.114036

    Article  ADS  MathSciNet  Google Scholar 

  18. E.P. Biernat, F. Gross, T. Peña, A. Stadler, S. Leitão, Few Body Syst. 59(5), 80 (2018). https://doi.org/10.1007/s00601-018-1401-z

    Article  ADS  Google Scholar 

  19. F. Siringo, PoS LATTICE2016, 342 (2017). https://doi.org/10.22323/1.256.0342

  20. G.C. Wick, Phys. Rev. 96, 1124 (1954). https://doi.org/10.1103/PhysRev.96.1124

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Itzykson, J.B. Zuber, Quantum Field Theory. International Series in Pure and Applied Physics (McGraw-Hill, New York, 1980). https://doi.org/10.1063/1.2916419

    Book  Google Scholar 

  22. V.A. Karmanov, J. Carbonell, Eur. Phys. J. A 27, 1 (2006). https://doi.org/10.1140/epja/i2005-10193-0

    Article  ADS  Google Scholar 

  23. V. Sauli, J. Phys. G35, 035005 (2008). https://doi.org/10.1088/0954-3899/35/3/035005

    Article  ADS  Google Scholar 

  24. J. Carbonell, V.A. Karmanov, Eur. Phys. J. A 46, 387 (2010). https://doi.org/10.1140/epja/i2010-11055-4

    Article  ADS  Google Scholar 

  25. V. Sauli, Phys. Rev. D 90, 016005 (2014). https://doi.org/10.1103/PhysRevD.90.016005

    Article  ADS  Google Scholar 

  26. J. Carbonell, V.A. Karmanov, Phys. Rev. D 90(5), 056002 (2014). https://doi.org/10.1103/PhysRevD.90.056002

    Article  ADS  Google Scholar 

  27. C. Gutierrez, V. Gigante, T. Frederico, G. Salmè, M. Viviani, L. Tomio, Phys. Lett. B 759, 131 (2016). https://doi.org/10.1016/j.physletb.2016.05.066

    Article  ADS  Google Scholar 

  28. W. de Paula, T. Frederico, G. Salmè, M. Viviani, Phys. Rev. D 94(7), 071901 (2016). https://doi.org/10.1103/PhysRevD.94.071901

    Article  ADS  Google Scholar 

  29. J. Carbonell, T. Frederico, V.A. Karmanov, Eur. Phys. J. C 77(1), 58 (2017). https://doi.org/10.1140/epjc/s10052-017-4616-0

    Article  ADS  Google Scholar 

  30. E. Ydrefors, J.H. Alvarenga Nogueira, V.A. Karmanov, T. Frederico, Phys. Lett. B 791, 276 (2019). https://doi.org/10.1016/j.physletb.2019.02.046

    Article  ADS  MathSciNet  Google Scholar 

  31. W.D. Brown, R.D. Puff, L. Wilets, Phys. Rev. C 2, 331 (1970). https://doi.org/10.1103/PhysRevC.2.331

    Article  ADS  Google Scholar 

  32. G. Krein, M. Nielsen, R.D. Puff, L. Wilets, Phys. Rev. C 47, 2485 (1993). https://doi.org/10.1103/PhysRevC.47.2485

    Article  ADS  Google Scholar 

  33. M.E. Bracco, A. Eiras, G. Krein, L. Wilets, Phys. Rev. C 49, 1299 (1994). https://doi.org/10.1103/PhysRevC.49.1299

    Article  ADS  Google Scholar 

  34. C.A. da Rocha, G. Krein, L. Wilets, Nucl. Phys. A 616, 625 (1997). https://doi.org/10.1016/S0375-9474(96)00480-0

    Article  ADS  Google Scholar 

  35. R.A. Tripolt, J. Weyrich, L. von Smekal, J. Wambach, Phys. Rev. D 98(9), 094002 (2018). https://doi.org/10.1103/PhysRevD.98.094002

    Article  ADS  Google Scholar 

  36. Z. Wang, L. He, Phys. Rev. D 98(9), 094031 (2018). https://doi.org/10.1103/PhysRevD.98.094031

    Article  ADS  MathSciNet  Google Scholar 

  37. D.C. Duarte, T. Frederico, Private communication

  38. S. Jia, M.R. Pennington, Phys. Rev. D 96(3), 036021 (2017). https://doi.org/10.1103/PhysRevD.96.036021

    Article  ADS  MathSciNet  Google Scholar 

  39. A.S. Kronfeld, Phys. Rev. D 58, 051501 (1998). https://doi.org/10.1103/PhysRevD.58.051501

    Article  ADS  Google Scholar 

  40. J.M. Cornwall, Phys. Rev. D 26, 1453 (1982). https://doi.org/10.1103/PhysRevD.26.1453

    Article  ADS  Google Scholar 

  41. R. Bermudez, L. Albino, L.X. Gutiérrez-Guerrero, M.E. Tejeda-Yeomans, A. Bashir, Phys. Rev. D 95(3), 034041 (2017). https://doi.org/10.1103/PhysRevD.95.034041

    Article  ADS  Google Scholar 

  42. A.C. Aguilar, M.N. Ferreira, C.T. Figueiredo, J. Papavassiliou, Phys. Rev. D 99(3), 034026 (2019). https://doi.org/10.1103/PhysRevD.99.034026

    Article  ADS  Google Scholar 

  43. G. Krein, Proceedings, QCD-TNT-III, From Quarks and Gluons to Hadronic Matter: A Bridge too Far?: Trento, Italy, September 2–6, 2013 (2013). https://doi.org/10.22323/1.193.0021

  44. J.L. Kneur, A. Neveu, Phys. Rev. D 92(7), 074027 (2015). https://doi.org/10.1103/PhysRevD.92.074027

    Article  ADS  Google Scholar 

  45. M. Peláez, U. Reinosa, J. Serreau, M. Tissier, N. Wschebor, Phys. Rev. D 96(11), 114011 (2017). https://doi.org/10.1103/PhysRevD.96.114011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Work partially supported by: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Grant No. 8888.330776 (C.S.R.C.), 8888.330775 (E.L.S.), 8888.330773 (V.V.L.), Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Grant No. 305894/2009-9 (G.K.), 464898/2014-5(G.K) (INCT Física Nuclear e Aplicações), Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Grant No. 2013/01907-0 (G.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial Issue”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solis, E.L., Costa, C.S.R., Luiz, V.V. et al. Quark Propagator in Minkowski Space. Few-Body Syst 60, 49 (2019). https://doi.org/10.1007/s00601-019-1517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1517-9

Navigation