Skip to main content

Advertisement

Log in

Updates in aortic wall pathology

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Several studies have investigated the pathogenesis of aortic wall abnormalities such as aortic dissection or aneurysm; however, the comprehensive pathological in situ event involved in the development of the disease is not understood well. The vasa vasorum form a network of capillaries or venules around the adventitia and outer media, which play an important role in the aortic wall structure and function. Impairment of their function may induce tissue hypoxia, impede the transfer of cellular nutrients, and cause aortic medial degeneration, which is considered the major predisposing factor to this aortic wall pathology. This review updates our understanding of the pathological changes in the aortic media and vasa vasorum of patients with aortic dissection and aortic aneurysm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morgagni GB. De Sedibus et Causis Morborum per Anatomen Indigatis [The sites and causes of disease demonstrated by autopsy] 1761. Bologna. (Translated by Benjamin Alexander, London 1769).

  2. Nicholls F. Observations concerning the body of his late majesty. Philos Trans Lond. 1762;52:265.

    Google Scholar 

  3. Livesay JJ, Messner GN, Vaughn WK. Milestones in the treatment of aortic aneurysm: Denton A. Cooley, MD, and the Texas Heart Institute. Tex Heart Inst J. 2005;32:130–4.

    PubMed  PubMed Central  Google Scholar 

  4. Tsai TT, Nienaber CA, Eagle KA. Acute aortic syndromes. Circulation. 2005;112:3802–13.

    PubMed  Google Scholar 

  5. Mussa FF, Horton JD, Moridzadeh R, Nicholson J, Trimarchi S, Eagle KA. Acute aortic dissection and intramural hematoma: a systematic review. JAMA. 2016;316:754–63.

    PubMed  Google Scholar 

  6. Hirst AE Jr, Johns VJ Jr, Kime SW Jr. Dissecting aneurysm of the aorta: a review of 505 cases. Medicine (Baltimore). 1958;37:217–79.

    PubMed  Google Scholar 

  7. Larson EW, Edwards WD. Risk factors for aortic dissection: a necropsy study of 161 cases. Am J Cardiol. 1984;53:849–55.

    CAS  PubMed  Google Scholar 

  8. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. Circulation. 2010;121:e266-369.

    PubMed  Google Scholar 

  9. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases. Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. Eur Heart J. 2014;35:2873–926.

    PubMed  Google Scholar 

  10. JCS Joint Working Group. Guidelines for diagnosis and treatment of aortic aneurysm and aortic dissection (JCS 2011): digest version. Circ J. 2013;77:789–828.

    Google Scholar 

  11. Gsell O. Wandnekrosen der aorta als selbständige Erkrankung und ihre Beziehung zur Spontanruptur. Virchows Arch f path Anat. 1928;270:1–36.

    Google Scholar 

  12. Gore I, Seiwert VJ. Dissecting aneurysm of the aorta; pathological aspects; an analysis of eighty-five fatal cases. AMA Arch Pathol. 1952;53:121–41.

    CAS  PubMed  Google Scholar 

  13. Gore I. Pathogenesis of dissecting aneurysma of the aorta. AMA Arch Pathol. 1952;53:142–53.

    CAS  PubMed  Google Scholar 

  14. Burke A, Virmani R. Blood vessels, acquired aortic root dilatation and dissection. In: Mills SA, editor. Sternberg’s diagnostic surgical pathology, 5th edn, Chapter 30. Philadelphia: Lippincott Williams and Wilkins; 2010. p. 1228–30.

    Google Scholar 

  15. Erbel R, Alfonso F, Boileau C, Dirsch O, Eber B, Haverich A, et al. Diagnosis and management of aortic dissection. Eur Heart J. 2001;22:1642–81.

    CAS  PubMed  Google Scholar 

  16. Akutsu K. Etiology of aortic dissection. Gen Thorac Cardiovasc Surg. 2019;67:271–6.

    PubMed  Google Scholar 

  17. Baikoussis NG, Apostolakis EE, Papakonstantinou NA, Siminelakis SN, Arnaoutoglou H, Papadopoulos G, et al. The implication of vasa vasorum in surgical disease of the aorta. Eur J Cardiothorac Surg. 2011;40:412–7.

    PubMed  Google Scholar 

  18. Angouras D, Sokolis DP, Dosios T, Kostomitsopoulos N, Boudoulas H, Skalkeas G, et al. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection. Eur J Cardiothorac Surg. 2000;17:468–73.

    CAS  PubMed  Google Scholar 

  19. Stefanadis C, Vlachopoulos C, Karayannacos P, Boudoulas H, Stratos C, Filippides T, et al. Effect of vasa vasorum flow on structure and function of the aorta in experimental animals. Circulation. 1995;91:2669–78.

    CAS  PubMed  Google Scholar 

  20. Schmitto JD, Popov AF, Coskun KO, Friedrich M, Sossalla S, Didilis V, et al. Morphological investigations of type A aortic dissection. Ann Thorac Cardiovasc Surg. 2010;16:331–4.

    PubMed  Google Scholar 

  21. Osada H, Kyogoku M, Morishima M, Ishidou M, Nakajima H. Aortic dissection in the outer third of the media: what is the role of the vasa vasorum in the triggering process? Eur J Cardiothorac Surg. 2013;43:e82–8.

    PubMed  Google Scholar 

  22. Koester W. Endarteritis and arteritis. Berl Klin Wochenschr. 1876;13:454–5.

    Google Scholar 

  23. Scotland RS, Vallance PJ, Ahluwalia A. Endogenous factors involved in regulation of tone of arterial vasa vasorum: implications for conduit vessel physiology. Cardiovasc Res. 2000;46:403–11.

    CAS  PubMed  Google Scholar 

  24. Wolinsky H, Glagov S. Nature of species differences in the medial distribution of aortic vasa vasorum in mammals. Circ Res. 1967;20:409–21.

    CAS  PubMed  Google Scholar 

  25. Okuyama K, Yaginuma G, Takahashi T, Sasaki H, Mori S. The development of vasa vasorum of the human aorta in various conditions. A morphometric study. Arch Pathol Lab Med. 1988;112:721–5.

    CAS  PubMed  Google Scholar 

  26. Geiringer E. Intimal vascularization and atherosclerosis. J Pathol Bacteriol. 1951;63:201–11.

    CAS  PubMed  Google Scholar 

  27. Ritman EL, Lerman A. The dynamic vasa vasorum. Cardiovasc Res. 2007;75:649–58.

    CAS  PubMed  Google Scholar 

  28. Sano M, Unno N, Sasaki T, Baba S, Sugisawa R, Tanaka H, et al. Topologic distributions of vasa vasorum and lymphatic vasa vasorum in the aortic adventitia—implications for the prevalence of aortic disease. Atherosclerosis. 2016;247:127–34.

    CAS  PubMed  Google Scholar 

  29. Federspiel JM, Tschernig T, Laschke MW, Wagenpfeil S, Schnabel P, Schäfers HJ. The vasa vasorum reach deep into the human thoracic aorta. Ann Anat. 2019;225:54–6.

    PubMed  Google Scholar 

  30. Heistad DD, Marcus ML, Larsen GE, Armstrong ML. Role of vasa vasorum in nourishment of the aortic wall. Am J Physiol. 1981;240:H781–7.

    CAS  PubMed  Google Scholar 

  31. Werber AH, Heistad DD. Diffusional support of arteries. Am J Physiol. 1985;248:H901–6.

    CAS  PubMed  Google Scholar 

  32. Buerk DG, Goldstick TK. Oxygen tension changes in the outer vascular wall supplied by vasa vasorum following adenosine and epinephrine. Blood Vessels. 1986;23:9–21.

    CAS  PubMed  Google Scholar 

  33. Heistad DD, Marcus ML, Law EG, Armstrong ML, Ehrhardt JC, Abboud FM. Regulation of blood flow to the aortic media in dogs. J Clin Invest. 1978;62:133–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Scotland RS, Vallance P, Ahluwalia A. On the regulation of tone in vasa vasorum. Cardiovasc Res. 1999;41:237–45.

    CAS  PubMed  Google Scholar 

  35. Heistad DD, Marcus ML, Martins JB. Effects of neural stimuli on blood flow through vasa vasorum in dogs. Circ Res. 1979;45:615–20.

    CAS  PubMed  Google Scholar 

  36. Ohhira A, Ohhashi T. Effects of aortic pressure and vasoactive agents on the vascular resistance of the vasa vasorum in canine isolated thoracic aorta. J Physiol. 1992;453:233–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Billaud M, Donnenberg VS, Ellis BW, Meyer EM, Donnenberg AD, Hll JC, et al. Classification and functional characterization of vasa vasorum-associated perivascular progenitor cells in human aorta. Stem Cell Reports. 2017;9:292–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kawabe J, Hasebe N. Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. Biomed Res Int. 2014. https://doi.org/10.1155/2014/701571.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kumamoto M, Nakashima Y, Sueishi K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum Pathol. 1995;26:450–6.

    CAS  PubMed  Google Scholar 

  40. Mulligan-Kehoe MJ, Simons M. Vasa vasorum in normal and diseased arteries. Circulation. 2014;129:2557–66.

    PubMed  Google Scholar 

  41. Fritze O, Romero B, Schleicher M, Jacob MP, Oh DY, Starcher B, et al. Age-related changes in the elastic tissue of the human aorta. J Vasc Res. 2012;49:77–86.

    PubMed  Google Scholar 

  42. Nakashima Y, Kurozumi T, Sueishi K, Tanaka K. Dissecting aneurysm: a clinicopathologic and histopathologic study of 111 autopsied cases. Human Pathol. 1990;21:291–6.

    CAS  Google Scholar 

  43. Kageyama N, Ro A, Tanifuji T, Kumagai T, Murai T, Fukunaga T. The histopathologic study of elastic laminar and interconnecting elastic fiber in aortic media: implications for aortic dissection. J Jpn Coll Angiol. 2005;45:1003–9.

    Google Scholar 

  44. Nakashima Y, Shiokawa Y, Sueishi K. Alterations of elastic architecture in human artic dissecting aneurysm. Lab Investig. 1990;62:751–60.

    CAS  PubMed  Google Scholar 

  45. Roberts WC, Vowels TJ, Kitchens BL, Ko JM, Filardo G, Henry AC, et al. Aortic medial elastic fiber loss in acute ascending aortic dissection. Am J Cardiol. 2011;108:1639–44.

    PubMed  Google Scholar 

  46. Reid AJ, Milewicz D. Arteries, smooth muscle cells and genetic cause of thoracic aortic aneurysms, “Inflammatory Diseases of Blood Vessels. Oxford: Wiley-Blackwell; 2012. p. 126–35.

    Google Scholar 

  47. Verma S, Siu SC. Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med. 2014;370:1920–9.

    CAS  PubMed  Google Scholar 

  48. Braverman AC, Guven H, Beardslee MA, Makan M, Kates AM, Moon MR. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30:470–522.

    PubMed  Google Scholar 

  49. Bonderman D, Schnell EG, Wollenek G, Maurer G, Baumgartner H, Lang IM. Mechanisms underlying aortic dilatation in congenital aortic valve malformation. Circulation. 1999;99:2138–43.

    CAS  PubMed  Google Scholar 

  50. Wilens SL, Malcolm JA, Vazquez JM. Experimental infarction (medial necrosis) of the dog’s aorta. Am J Pathol. 1965;47:695–711.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakata Y, Shionoya S. Vascular lesions due to obstruction of the vasa vasorum. Nature. 1966;212:1258–9.

    CAS  PubMed  Google Scholar 

  52. Barsky SH, Rosen S. Aortic infarction following dissecting aortic aneurysm. Circulation. 1978;568:876–81.

    Google Scholar 

  53. Kyogoku M, Osada H, Nakajima H. Reply to Angouras and Sokolis. Eur J Cardiothorac Surg. 2014;45:396.

    PubMed  Google Scholar 

  54. Angouras DC, Sokolis DP. Mechanical impairment of the aortic media caused by vasa vasorum dysfunction: a potential key element in the pathogenesis of aortic dissection in hypertensive patients. Eur J Cardiothorac Surg. 2014;45:395.

    PubMed  Google Scholar 

  55. Erdheim J. Medionecrosis aortae idiopathica. Virchows Arch f path Anat. 1929;273:454–79.

    Google Scholar 

  56. Erdheim J. Medionecrosis aortae idiopathica cystica. Virchows Arch f path Anat. 1930;276:187–229.

    Google Scholar 

  57. Osada H, Kyogoku M, Matsuo T, Kanemitsu N. Histopathological evaluation of aortic dissection: a comparison of congenital versus acquired aortic wall weakness. Interact Cardiovasc Thorac Surg. 2018;27:277–83.

    PubMed  Google Scholar 

  58. Sugai M, Kunita Y. A morphological study of dissecting aneurysm of aorta in old individuals over 50 years of age. Acta Pathol Jpn. 1981;31:591–9.

    CAS  PubMed  Google Scholar 

  59. Kato M, Kyogoku M. Competence growth factors evoke the phenotypic translation of arterial smooth muscle cells. Ann NY Acad Sci. 1990;598:232–7.

    CAS  PubMed  Google Scholar 

  60. Gomez D, Owens GK. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res. 2012;95:156–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thubrikar MJ, Agali P, Robicsek F. Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. J Med Eng Technol. 1999;23:127–34.

    CAS  PubMed  Google Scholar 

  62. Marcus ML, Heistad DD, Armstrong ML, Abboud FM. Effects of chronic hypertension on vasa vasorum in the thoracic aorta. Cardiovasc Res. 1985;19:777–81.

    CAS  PubMed  Google Scholar 

  63. Kohnken R, Scansen BA, Premanandan C. Vasa vasorum arteriopathy: relationship with systemic arterial hypertension and other vascular lesions in cats. Vet Pathol. 2017;54:475–83.

    CAS  PubMed  Google Scholar 

  64. Olivetti G, Melissari M, Marchetti G, Anversa P. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circ Res. 1982;51:19–26.

    CAS  PubMed  Google Scholar 

  65. Tinajero MG, Gotlieb AI. Recent developments in vascular adventitial pathobiology: the dynamic adventitia as a complex regulator of vascular disease. Am J Pathol. 2020;190:520–34.

    CAS  PubMed  Google Scholar 

  66. Evangelista A, Isselbacher EM, Bossone E, Gleason TG, Eusanio MD, Sechtem U, et al. Insights from the international registry of acute aortic dissection: A 20-year experience of collaborative clinical research. Circulation. 2018;137:1846–60.

    PubMed  Google Scholar 

  67. Rylski B, Georgieva N, Beyersdorf F, Büsch C, Boening A, Haunschild J, et al. Gender-related differences in patients with acute aortic dissection type A. J Thorac Cardiovasc Surg. 2019;19:33494–504.

    Google Scholar 

  68. Wang W, Duan W, Xue Y, Wang L, Liu J, Yu S, et al. Clinical features of acute aortic dissection from the registry of aortic dissection in China. J Thorac Cardiovasc Surg. 2014;148:2995–3000.

    PubMed  Google Scholar 

  69. Tokuda Y, Miyata H, Motomura N, Oshima H, Usui A, Takamoto S. Japan Adult Cardiovascular Database Organization. Brain protection during ascending aortic repair for Stanford type A acute aortic dissection surgery. Nationwide analysis in Japan. Circ J. 2014;78:2431–8.

    PubMed  Google Scholar 

  70. Goda M, Minami T, Imoto K, Uchida K, Masuda M, Meuris B. Differences of patients’ characteristics in acute type A aortic dissection - surgical data from Belgian and Japanese centers. J Cardiothorac Surg. 2018;13:92.

    PubMed  PubMed Central  Google Scholar 

  71. Bossone E, LaBounty TM, Eagle KA. Acute aortic syndromes: diagnosis and management, an update. Eur Heart J. 2018;39:739–49.

    PubMed  Google Scholar 

  72. Elefteriades JA, Ziganshin BA. Examining the face of aortic dissection outside the Western world. J Thorac Cardiovasc Surg. 2014;148:3001–2.

    PubMed  Google Scholar 

  73. Derosa G, D’Angelo A, Ciccarelli L, Piccinni MN, Pricolo F, Salvadeo S, et al. Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium. 2006;13:227–31.

    CAS  PubMed  Google Scholar 

  74. Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension. 2001;38:399–403.

    CAS  PubMed  Google Scholar 

  75. Hahn AW, Jonas U, Bühler FR, Resink TJ. Activation of human peripheral monocytes by angiotensin II. FEBS Lett. 1994;347:178–80.

    CAS  PubMed  Google Scholar 

  76. Joanna G, Felix S, Arnold VE. Acute aortic dissection: pathogenesis, risk factors and diagnosis. Swiss Med Wkly. 2017;147:14489.

    Google Scholar 

  77. Del Porto F, di Gioia C, Tritapepe L, Ferri L, Leopizzi M, Nofroni I, et al. The multitasking role of macrophages in Stanford type A acute aortic dissection. Cardiology. 2014;127:123–9.

    PubMed  Google Scholar 

  78. Chumachenko PV, Postnov AY, Ivanova AG, Afanasieva OI, Afanasiev MA, Ekta MB, et al. Thoracic aortic aneurysm and factors affecting aortic dissection. J Pers Med. 2020;10:153.

    PubMed  PubMed Central  Google Scholar 

  79. Lian G, Li X, Zhang L, Zhang Y, Sun L, Zhang X, et al. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway. EBioMedicine. 2019;49:291–304.

    PubMed  PubMed Central  Google Scholar 

  80. Jiang YF, Guo LL, Zhang LW, Chu YX, Zhu GL, Lu Y, et al. Local upregulation of interleukin-1 beta in aortic dissecting aneurysm: correlation with matrix metalloproteinase-2, 9 expression and biomechanical decrease. Interact Cardiovasc Thorac Surg. 2019;28:344–52.

    PubMed  Google Scholar 

  81. Wang X, Zhang H, Cao L, He Y, Ma A, Guo W. The role of macrophages in aortic dissection. Front Physiol. 2020;11:54.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Tanaka H, Zaima N, Sasaki T, Sano M, Yamamoto N, Saito T, et al. Hypoperfusion of the adventitial vasa vasorum develops an abdominal aortic aneurysm. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0134386.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tanaka H, Unno N, Suzuki Y, Sano H, Yata T, Urano T. Hypoperfusion of the Aortic wall secondary to degeneration of adventitial vasa vasorum causes abdominal aortic aneurysms. Curr Drug Targets. 2018;19:1327–32.

    CAS  PubMed  Google Scholar 

  84. Kuwahara F, Kai H, Tokuda K, Shibata R, Kusaba K, Tahara N, et al. Hypoxia-inducible factor-1alpha/vascular endothelial growth factor pathway for adventitial vasa vasorum formation in hypertensive rat aorta. Hypertension. 2002;39:46–50.

    CAS  PubMed  Google Scholar 

  85. Billaud M, Hill JC, Richards TD, Gleason TG, Phillippi JA. Medial hypoxia and adventitial vasa vasorum remodeling in human ascending aortic aneurysm. Front Cardiovasc Med. 2018. https://doi.org/10.3389/fcvm.2018.00124.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Evangelista A, Mukherjee D, Mehta RH, O’Gara PT, Fattori R, Cooper JV, et al. Acute intramural hematoma of the aorta: a mystery in evolution. Circulation. 2005;111:1063–70.

    PubMed  Google Scholar 

  87. Estrera AL, Sandhu HK, Leake SS, Charlton-Ouw KM, Afifi RO, Miller CC 3rd, et al. Early and late outcomes of acute type A aortic dissection with intramural hematoma. J Thorac Cardiovasc Surg. 2015;149:137–42.

    PubMed  Google Scholar 

  88. Krukenberg E. Beitrage zue Frage des Aneurysma dissecans. Beut z Path Anat w z Alleg Pathol. 1920;67:329.

    Google Scholar 

  89. Oderich GS, Kärkkäinen JM, Reed NR, Tenorio ER, Sandri GA. Penetrating Aortic Ulcer and Intramural Hematoma. Cardiovasc Intervent Radiol. 2019;42:321–34.

    PubMed  Google Scholar 

  90. Sundt TM. Intramural hematoma and penetrating atherosclerotic ulcer of the aorta. Ann Thorac Surg. 2007;83:S835–41.

    PubMed  Google Scholar 

  91. Macura KJ, Corl FM, Fishman EK, Bluemke DA. Pathogenesis in acute aortic syndromes: aortic dissection, intramural hematoma, and penetrating atherosclerotic aortic ulcer. AJR Am J Roentgenol. 2003;181:309–16.

    PubMed  Google Scholar 

  92. Vilacosta I, San Román JA. Acute aortic syndrome. Heart. 2001;85:365–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Baikoussis NG, Apostolakis EE, Siminelakis SN, Papadopoulos GS, Goudevenos J. Intramural haematoma of the thoracic aorta: who’s to be alerted the cardiologist or the cardiac surgeon? J Cardiothorac Surg. 2009;4:54.

    PubMed  PubMed Central  Google Scholar 

  94. Eagle KA, Bossone E. Intramural hematoma: When does a sheep become a wolf? J Am Coll Cardiol. 2017;69:40–2.

    PubMed  Google Scholar 

  95. Coady MA, Rizzo JA, Elefteriades JA. Pathologic variants of thoracic aortic dissections. Penetrating atherosclerotic ulcers and intramural hematomas. Cardiol Clin. 1999;17:637–57.

    CAS  PubMed  Google Scholar 

  96. Haverich A, Boyle EC. Aortic dissection is a disease of the vasa vasorum. JTCVS Open. 2021;5:30–2.

    PubMed  PubMed Central  Google Scholar 

  97. Hosoda Y, Suzuki M, O’Neal RM. Angiolathyrism. III. Vasa vasorum in experimental dissecting aortic aneurysm. Exp Mol Pathol. 1968;9:206–11.

    CAS  PubMed  Google Scholar 

  98. Pereira AH. Rupture of vasa vasorum and intramural hematoma of the aorta: a changing paradigm. J Vasc Bras. 2010;9:57–60.

    Google Scholar 

  99. Pereira AH. Intramural hematoma and penetrating atherosclerotic ulcers of the aorta: uncertainties and controversies. J Vasc Bras. 2019;18:e20180119.

    PubMed  PubMed Central  Google Scholar 

  100. Mukohara N. Intramural hematoma - contradiction to the theory of rupture of the vasa vasorum at onset. Ann Thorac Cardiovasc Surg. 2014;20:949–50.

    PubMed  Google Scholar 

  101. Al Rstum Z, Tanaka A, Eisenberg SB, Estrera AL. Optimal timing of type A intramural hematoma repair. Ann Cardiothorac Surg. 2019;8:524–30.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the late Dr. Masahisa Kyogoku for his deep perspectives investigating the etiology of aortic dissection. We thank Mr. Wataru Takayanagi from LAIMAN (www.laiman.co.jp) for his help with creating Figs. 3 and 4.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Minatoya.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osada, H., Minatoya, K. Updates in aortic wall pathology. Surg Today 52, 1671–1679 (2022). https://doi.org/10.1007/s00595-021-02420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02420-4

Keywords

Navigation