Skip to main content

Advertisement

Log in

Oxidized regenerated cellulose induces pleural thickening in patients with pneumothorax: possible involvement of the mesothelial–mesenchymal transition

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

The pleural covering technique, i.e., wrapping a part of or the entire surface of the lung with oxidized regenerative cellulose (ORC), reinforces visceral pleura through pleural thickening for patients with pneumothorax and cystic lung diseases. However, it remains undetermined how ORC induces pleural thickening.

Methods

A histopathological examination was performed for lung specimens from patients who had recurrent pneumothoraces after pleural covering and re-operation (n = 5). To evaluate the influence of ORC on the pleura in vitro, we used MeT-5A cells (a human pleural mesothelial cell line).

Results

Pleural thickening was confirmed in all lung specimens examined. Three months after covering, the thickened pleura showed inflammatory cell infiltration, proliferation of myofibroblasts, and expression of fibronectin and TGF-β. However, after 1 year, those findings virtually disappeared, and the thickened pleura was composed mainly of abundant collagen. When MeT-5A cells were cultured in ORC-immersed medium, their morphology changed from a cobblestone to spindle-shaped appearance. The expression of E-cadherin decreased, whereas that of N-cadherin, α-smooth muscle actin, and fibronectin increased, suggesting mesothelial–mesenchymal transition (Meso–MT).

Conclusions

Our results suggest that Meso–MT may be involved as a mechanism of pleural thickening induced by pleural covering with ORC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee S, Kim HR, Cho S, Huh DM, Lee EB, Ryu KM, et al. Staple line coverage after bullectomy for primary spontaneous pneumothorax: a randomized trial. Ann Thorac Surg. 2014;98:2005–11.

    Article  PubMed  Google Scholar 

  2. Kurihara M, Kataoka H, Ishikawa A, Endo R. Latest treatments for spontaneous pneumothorax. Gen Thorac Cardiovasc Surg. 2010;58:113–9.

    Article  PubMed  Google Scholar 

  3. Kurihara M, Mizobuchi T, Kataoka H, Sato T, Kumasaka T, Ebana H, et al. A total pleural covering for lymphangioleiomyomatosis prevents pneumothorax recurrence. PLoS ONE. 2016;11:e0163637.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Noda M, Okada Y, Maeda S, Sado T, Sakurada A, Hoshikawa Y, et al. An experience with the modified total pleural covering technique in a patient with bilateral intractable pneumothorax secondary to lymphangioleiomyomatosis. Ann Thorac Cardiovasc Surg. 2010;16:439–41.

    PubMed  Google Scholar 

  5. Noda M, Okada Y, Maeda S, Sado T, Sakurada A, Hoshikawa Y, et al. A total pleural covering technique in patients with intractable bilateral secondary spontaneous pneumothorax: report of five cases. Surg Today. 2011;41:1414–7.

    Article  PubMed  Google Scholar 

  6. Kusu T, Nakagiri T, Minami M, Shintani Y, Kadota Y, Inoue M, et al. Null allele alpha-1 antitrypsin deficiency: case report of the total pleural covering technique for disease-associated pneumothorax. Gen Thorac Cardiovasc Surg. 2012;60:452–5.

    Article  PubMed  Google Scholar 

  7. Ebana H, Otsuji M, Mizobuchi T, Kurihara M, Takahashi K, Seyama K. Pleural covering application for recurrent pneumothorax in a patient with Birt–Hogg–Dube syndrome. Ann Thorac Cardiovasc Surg. 2016;22(3):189–92. doi:10.5761/atcs.cr.15-00228.

    Article  PubMed  Google Scholar 

  8. Kadota Y, Fukui E, Kitahara N, Okura E, Ohta M. Total pleural covering technique for intractable pneumothorax in patient with Ehlers–Danlos syndrome. Gen Thorac Cardiovasc Surg. 2016;64:425–8.

    Article  PubMed  Google Scholar 

  9. Lebendiger A, Gitlitz GF, Hurwitt ES, Lord GH, Henderson J. Laboratory and clinical evaluation of a new absorbable hemostatic material prepared from oxidized regenerated cellulose. Surg Forum. 1960;10:440–3.

    CAS  PubMed  Google Scholar 

  10. Mutsaers SE. The mesothelial cell. Int J Biochem Cell Biol. 2004;36:9–16.

    Article  CAS  PubMed  Google Scholar 

  11. Haynes J, Srivastava J, Madson N, Wittmann T, Barber DL. Dynamic actin remodeling during epithelial–mesenchymal transition depends on increased moesin expression. Mol Biol Cell. 2011;22:4750–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu TH, Chiou YW, Chiu WT, Tang MJ, Chen CH, Yeh ML. The F-actin and adherence-dependent mechanical differentiation of normal epithelial cells after TGF-beta1-induced EMT (tEMT) using a microplate measurement system. Biomed Microdevice. 2014;16:465–78.

    Article  CAS  Google Scholar 

  13. Chen LJ, Ye H, Zhang Q, Li FZ, Song LJ, Yang J, et al. Bleomycin induced epithelial–mesenchymal transition (EMT) in pleural mesothelial cells. Toxicol Appl Pharmacol. 2015;283:75–82.

    Article  CAS  PubMed  Google Scholar 

  14. Owens S, Jeffers A, Boren J, Tsukasaki Y, Koenig K, Ikebe M, et al. Mesomesenchymal transition of pleural mesothelial cells is PI3K and NFkappaB-dependent. Am J Physiol Lung Cell Mol Physiol. 2015. doi:10.1152/ajplung.00396.2014.

    Google Scholar 

  15. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial–mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  17. Yanez-Mo M, Lara-Pezzi E, Selgas R, Ramirez-Huesca M, Dominguez-Jimenez C, Jimenez-Heffernan JA, et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med. 2003;348:403–13.

    Article  PubMed  Google Scholar 

  18. Li Y, Wang J, Asahina K. Mesothelial cells give rise to hepatic stellate cells and myofibroblasts via mesothelial–mesenchymal transition in liver injury. Proc Natl Acad Sci USA. 2013;110:2324–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki A, Maeda T, Baba Y, Shimamura K, Kato Y. Acidic extracellular pH promotes epithelial mesenchymal transition in Lewis lung carcinoma model. Cancer Cell Int. 2014;14:129.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Itoigawa Y, Harada N, Harada S, Katsura Y, Makino F, Ito J, et al. TWEAK enhances TGF-beta-induced epithelial–mesenchymal transition in human bronchial epithelial cells. Respir Res. 2015;16:48.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Takeuchi H, Kitade M, Kikuchi I, Shimanuki H, Kumakiri J, Takeda S. Influencing factors of adhesion development and the efficacy of adhesion-preventing agents in patients undergoing laparoscopic myomectomy as evaluated by a second-look laparoscopy. Fertil Steril. 2008;89:1247–53.

    Article  PubMed  Google Scholar 

  22. Wiseman DM, Trout JR, Franklin RR, Diamond MP. Metaanalysis of the safety and efficacy of an adhesion barrier (Interceed TC7) in laparotomy. J Reprod Med. 1999;44:325–31.

    CAS  PubMed  Google Scholar 

  23. ten Broek RP, Stommel MW, Strik C, van Laarhoven CJ, Keus F, van Goor H. Benefits and harms of adhesion barriers for abdominal surgery: a systematic review and meta-analysis. Lancet. 2014;383:48–59.

    Article  PubMed  Google Scholar 

  24. Laurens N, Koolwijk P, de Maat MP. Fibrin structure and wound healing. J Thromb Haemost JTH. 2006;4:932–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Phyllis Minick for her excellent proofreading of our English writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ebana.

Ethics declarations

Funding

The authors have nothing to disclose with regard to commercial support.

Conflict of interest

Ebana H. and the other co-authors have no conflicts of interests to declare.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebana, H., Hayashi, T., Mitani, K. et al. Oxidized regenerated cellulose induces pleural thickening in patients with pneumothorax: possible involvement of the mesothelial–mesenchymal transition. Surg Today 48, 462–472 (2018). https://doi.org/10.1007/s00595-017-1597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-017-1597-4

Keywords

Navigation