Skip to main content
Log in

Comparing diffusion-weighted imaging and positron emission tomography for pulmonary nodules measuring from 1 to 3 cm in size

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purposes

To examine whether diffusion-weighted magnetic resonance imaging (DWI) is as useful as fluorodeoxyglucose positron emission tomography (FDG-PET) for discriminating between malignant and benign pulmonary nodules measuring less than 3 cm in size, as well as for predicting tumor aggressiveness.

Methods

PET and DWI were carried out on 87 pulmonary nodules measuring from 1 to 3 cm in size (66 NSCLCs and 21 benign nodules). The signal intensity (SI) of DWI was measured by the contrast ratio (CR) between the lesions and spinal cord, i.e. SI-CR. The maximum standard uptake value (SUV) of PET was measured by CR between the lesions and contralateral lung, i.e. SUV-CR.

Results

DWI and PET showed sensitivities of 0.86 and 0.71, and specificities of 0.90 and 0.81, respectively. While there was no significant difference in the specificity between the two, DWI showed a significantly higher sensitivity than PET (p = 0.013). While the difference in the sensitivity was significant in lung adenocarcinoma (p = 0.012), there was no difference in the other histological types. Both the SI-CR and SUV-CR were significantly higher in the tumors with either histological invasiveness or lymphatic metastasis than in those without.

Conclusions

DWI is thus considered to be useful, not only to diagnose NSCLCs, especially in lung adenocarcinoma, but also for predicting tumor aggressiveness as well as FDG-PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Higashi K, Nishikawa T, Seki H, Oguchi M, Nambu Y, Ueda Y, Yuasa K, Tonami H, Okimura T, Yamamoto I. Fluorine-18-FDG PET imaging is negative in bronchioloalveolar lung cancer. J Nucl Med. 1998;39:1016–20.

    CAS  PubMed  Google Scholar 

  2. Cheran SK, Nielsen ND, Patz EF Jr. False-negative findings for primary lung tumors on FDG positron emission tomography: staging and prognostic implications. AJR. 2004;182:1129–32.

    Article  PubMed  Google Scholar 

  3. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to CT images. Lung Cancer. 2004;45:19–27.

    Article  PubMed  Google Scholar 

  4. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Kobayashi T, Uno K. Fluorine 18-tagged fluorodeoxyglucose positron emission tomographic scanning to predict lymph node metastasis, invasiveness, or both, in clinical T1 N0 M0 lung adenocarcinoma. J Thorac Cardiovasc Surg. 2004;128:396–401.

    Article  PubMed  Google Scholar 

  5. Watanabe K, Nomori H, Ohtsuka T, Naruke T, Ebihara A, Orikasa H, Yamazaki K, Uno K, Kobayashi T, Goya T. [F-18] Fluorodeoxyglucose positron emission tomography can predict pathological tumor stage and proliferative activity determined by Ki-67 in clinical stage IA lung adenocarcinomas. Jpn J Clin Oncol. 2006;36:403–9.

    Article  PubMed  Google Scholar 

  6. Imai K, Minamiya Y, Saito H, Motoyama S, Sato Y, Ito A, Yoshino K, Kudo S, Takashima S, Kawaharada Y, Kurihara N, Orino K, Ogawa J. Diagnostic imaging in the preoperative management of lung cancer. Surg Today. 2014;44:1197–206.

    Article  PubMed  Google Scholar 

  7. Goo JM, Im JG, Do KH, Yeo JS, Seo JB, Kim HY, Chung JK. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000;216:117–21.

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Takashima S, Takayama F, Kawashima S, Saito A, Matsushita T, Momose M, Ishiyama T. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology. 2001;220:621–30.

    Article  CAS  PubMed  Google Scholar 

  9. Sumi M, Takagi Y, Uetani M, Morikawa M, Hayashi K, Kabasawa H, Aikawa K, Nakamura T. Diffusion-weighted echoplanar MR imaging of salivary glands. AJR. 2002;178:959–65.

    Article  PubMed  Google Scholar 

  10. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Rad Med. 2004;22:275–82.

    Google Scholar 

  11. Nasu K, Kuroki Y, Kuroki S, Murakami K, Nawano S, Moriyama N. Diffusion-weighted single shot echo planar imaging of colorectal cancer using a sensitivity-encoding technique. Jpn J Clin Oncol. 2004;34:620–6.

    Article  PubMed  Google Scholar 

  12. Murakami R, Sugahara T, Nakamura H, Hirai T, Kitajima M, Hayashida Y, Baba Y, Oya N, Kuratsu J, Yamashita Y. Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology. 2007;243:493–9.

    Article  PubMed  Google Scholar 

  13. Woodhams R, Matsunaga K, Kan S, Hata H, Ozaki M, Iwabuchi K, Kuranami M, Watanabe M, Hayakawa K. ADC mapping of benign and malignant breast tumors. Magn Reson Med Sci. 2005;4:35–42.

    Article  PubMed  Google Scholar 

  14. Hayashida Y, Yakushiji T, Awai K, Katahira K, Nakayama Y, Shimomura O, Kitajima M, Hirai T, Yamashita Y, Mizuta H. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol. 2006;16:2637–43.

    Article  PubMed  Google Scholar 

  15. Reinsberg SA, Payne GS, Riches SF, Ashley S, Brewster JM, Morgan VA, deSouza NM. Combined use of Diffusion-Weighted MRI and 1H MR Spectroscopy to Increase Accuracy in Prostate Cancer Detection. AJR. 2007;188:91–8.

    Article  PubMed  Google Scholar 

  16. Dzik-Jurasz A, Domenig C, George M, Wolber J, Padhani A, Brown G, Doran S. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet. 2002;360:307–8.

    Article  PubMed  Google Scholar 

  17. Matoba M, Tonami H, Kondou T, Yokota H, Higashi K, Toga H, Sakuma T. Lung carcinoma: diffusion weighted MR imaging—preliminary evaluation with apparent diffusion coefficient. Radiology. 2007;243:570–7.

    Article  PubMed  Google Scholar 

  18. Mori T, Nomori H, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, Yamashita Y. Diffusion-weighted magnetic resonance imaging for diagnosing malignant pulmonary nodules/masses: comparison with positron emission tomography. J Thorac Oncol. 2008;3:358–64.

    Article  PubMed  Google Scholar 

  19. Ohba Y, Nomori H, Mori T, Ikeda K, Shibata H, Kobayashi H, Shiraishi S, Katahira K. Is diffusion-weighted magnetic resonance imaging superior to fluorodeoxyglucose-positron emission tomography in non-small cell lung cancer? J Thorac Cardiovasc Surg. 2009;138:439–45.

    Article  PubMed  Google Scholar 

  20. Nomori H, Mori T, Ikeda K, Kawanaka K, Shiraishi S, Katahira K, Yamashita Y. Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg. 2008;135:816–22.

    Article  PubMed  Google Scholar 

  21. Ohno Y, Koyama H, Onishi Y, Takenaka D, Nogami M, Yoshikawa T, Matsumoto S, Kotani Y, Sugimura K. Non-small cell lung cancer: whole-body MR examination for M-stage assessment—utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008;248:643–54.

    Article  PubMed  Google Scholar 

  22. Komori T, Narabayashi I, Matsumura K, Matsuki M, Akagai H, Ogura Y, Aga F, Adachi I. 2-[Fluorine-18]-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med. 2007;21:209–15.

    Article  PubMed  Google Scholar 

  23. Lichy MP, Aschoff P, Plathow C, Stemmer A, Horger W, Mueller W, Steidle G, Horger M, Schafer J, Eschmann SM, Kiefer B, Claussen CD, Pfannenberg C, Schlemmer HP. Tumor detection by diffusion-weighted MRI and ADC-mapping—initial clinical experiences in comparison to PET-CT. Invest Radiol. 2007;42:605–13.

    Article  PubMed  Google Scholar 

  24. Uto T, Takehara Y, Nakamura Y, Naito T, Hashimoto D, Inui N, Suda T, Nakamura H, Chida K. Higher sensitivity and specificity for diffusion-weighted imaging of malignant lung lesions without apparent diffusion coefficient quantification. Radiology. 2009;252:247–54.

    Article  PubMed  Google Scholar 

  25. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K. Visual and semiquantitative analyses for F-18 fluorodeoxyglucose PET scanning in pulmonary nodules 1 cm to 3 cm in size. Ann Thorac Surg. 2005;79:984–8.

    Article  PubMed  Google Scholar 

  26. Ohba Y, Nomori H, Shibata H, Kobayashi H, Mori T, Shiraishi S, Nakashima R. Evaluation of visual and semiquantitative assessments of fluorodeoxyglucose-uptake on PET Scans for the diagnosis of pulmonary malignancies 1 to 3 cm in Size. Ann Thorac Surg. 2009;87:886–91.

    Article  PubMed  Google Scholar 

  27. Wang J, Takashima S, Takayama F, Kawakami S, Saito A, Matsushita T, Momose M, Ishiyama T. Head and neck lesions: characterization with diffusion weighted echo-planar MR imaging. Radiology. 2001;220:621–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Hiroaki Nomori MD and the other co-authors have no conflicts of interest to declare in association with this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nomori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomori, H., Cong, Y., Sugimura, H. et al. Comparing diffusion-weighted imaging and positron emission tomography for pulmonary nodules measuring from 1 to 3 cm in size. Surg Today 45, 1535–1541 (2015). https://doi.org/10.1007/s00595-015-1117-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-015-1117-3

Keywords

Navigation