Skip to main content

Advertisement

Log in

Possible roles of 5-HT in vein graft failure due to intimal hyperplasia 5-HT, nitric oxide and vein graft

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

For vascular occlusive disease, an autologous vein graft is the most suitable conduit for arterial reconstruction. Intimal hyperplasia, resulting from the migration and proliferation of vascular smooth muscle cells, is a major obstacle to patency after vein grafting. The degree to which the function of nitric oxide (NO) in the vein graft is preserved has been reported to be associated with the magnitude of intimal hyperplasia. Serotonin (5-HT) is released from platelets in the vascular system and plays physiological roles in controlling the vascular tone. The subtype receptors contributing to the 5-HT-induced mechanical responses vary by vessel type (artery and vein) and among species (dogs, rabbits, rats, and so on). Recent studies have demonstrated that 5-HT induces vasoconstriction through the activation of 5-HT2A receptors in smooth muscle cells or vasodilatation through the activation of endothelial 5-HT1B receptors in arteries from various animals. However, the effects of 5-HT have not been clarified in grafted veins. We herein demonstrate the responses to 5-HT in un-operated veins and then autogenous vein grafts. Next, we describe the effects of chronic in vivo administration of Rho-kinase inhibitors and 5-HT2A receptor antagonists, both of which reduce the 5-HT-induced contraction and intimal hyperplasia in vein grafts. Further studies targeting 5-HT are required to evaluate its possible benefits for autologous vein grafts with respect to vasospasm, function, and patency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mori E, Komori K, Kume M, Yamaoka T, Shoji T, Furuyama T. Comparison of the long-term results between surgical and conservative treatment in patients with intermittent claudication. Surgery. 2002;131(1 Suppl):S269–74.

    Article  PubMed  Google Scholar 

  2. Davies MG, Hagen PO. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg. 1995;9(1):7–18.

    Article  PubMed  Google Scholar 

  3. Motwani J, Topol E. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation. 1998;97:916–31.

    Article  CAS  PubMed  Google Scholar 

  4. Morinaga K, Eguchi H, Miyazaki T, Okadome K, Sugimachi K. Development and regression of intimal thickening of arterially transplanted autologous vein grafts in dogs. J Vasc Surg. 1987;5:719–30.

    CAS  PubMed  Google Scholar 

  5. Komori K, Yamamura S, Ishida M, Matsumoto T, Kuma S, Eguchi D. Acceleration of impairment of endothelium-dependent response under poor runoff conditions in canine autogenous vein grafts. Eur J Vasc Endovasc Surg. 1997;14:475–81.

    Article  CAS  PubMed  Google Scholar 

  6. Komori K, Okadome K, Sugimachi K. Endothelium-derived relaxing factor and vein grafts. Br J Surg. 1991;78:1027–30.

    Article  CAS  PubMed  Google Scholar 

  7. Okazaki J, Komori K, Kawasaki K, Eguchi D, Ishida M, Sugimachi K. l-arginine inhibits smooth muscle cell proliferation of vein graft intimal thickness in hypercholesterolemic rabbits. Cardiovasc Res. 1997;36:429–36.

    Article  CAS  PubMed  Google Scholar 

  8. Saxena P. Serotonin receptors: subtypes, functional responses and therapeutic relevance. Pharmacol Ther. 1995;66:339–68.

    Article  CAS  PubMed  Google Scholar 

  9. Houston D, Vanhoutte P. Comparison of serotonergic receptor subtypes on the smooth muscle and endothelium of the canine coronary artery. J Pharmacol Exp Ther. 1988;244:1–10.

    CAS  PubMed  Google Scholar 

  10. Fujita M, Minamino T, Minamino T, Asanuma H, Asanuma H, Ogita H. Selective blockade of serotonin 5-HT2A receptor increases coronary blood flow via augmented cardiac nitric oxide release through 5-HT1B receptor in hypoperfused canine hearts. J Mol Cell Cardiol. 2004;37:1219–23.

    CAS  PubMed  Google Scholar 

  11. Schoeffter P, Hoyer D. 5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT1D receptor subtype. J Pharmacol Exp Ther. 1990;252:387–95.

    CAS  PubMed  Google Scholar 

  12. Banes A, Florian JA, Watts SW. Mechanisms of 5-hydroxytryptamine2A receptor activation of the mitogen-activated protein kinase pathway in vascular smooth muscle. J Pharmacol Exp Ther. 1999;291:1179–87.

    CAS  PubMed  Google Scholar 

  13. Bhattacharya A, Schenck KW, Xu Y-C, Nisenbaum L, Galbreath E, Cohen ML. 5-Hydroxytryptamine 1B receptor-mediated contraction of rabbit saphenous vein and basilar artery: role of vascular endothelium. J Pharmacol Exp Ther. 2004;309:825–32.

    Article  CAS  PubMed  Google Scholar 

  14. Maekawa T, Komori K, Kajikuri J, Itoh T. Characteristics of the actions by which 5-hydroxytryptamine affects electrical and mechanical activities in rabbit jugular vein graft. Br J Pharmacol. 2012;166(4):1419–32.

    Article  CAS  PubMed  Google Scholar 

  15. Itoh T, Maekawa T, Shibayama Y. Characteristics of ACh-induced hyperpolarization and relaxation in rabbit jugular vein. Br J Pharmacol. 2012;167(3):682–96.

    Article  CAS  PubMed  Google Scholar 

  16. Ishida M, Komori K, Yonemitsu Y, Taguchi K, Onohara T, Sugimachi K. Immunohistochemical phenotypic alterations of rabbit autologous vein grafts implanted under arterial circulation with or without poor distal runoff implications of vein graft remodeling. Atherosclerosis. 2001;154:345–54.

    Article  CAS  PubMed  Google Scholar 

  17. Davies MG, Hagen PO. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg. 1995;9:7–18.

    Article  PubMed  Google Scholar 

  18. Komori K, Inoguch H, Kume M, Shoji T, Furuyama T. Differences in endothelial function and morphologic modulation between canine autogenous venous and arterial grafts: endothelium and intimal thickening. Surgery. 2002;131:S249–55.

    Article  PubMed  Google Scholar 

  19. Linder AE, Ni W, Diaz JL, Szasz T, Burnett R, Watts SW. Serotonin (5-HT) in veins: not all in vain. J Pharmacol Exp Ther. 2007;323:415–21.

    Article  CAS  PubMed  Google Scholar 

  20. Komori K, Shimokawa H, Vanhoutte PM. Endothelium-dependent relaxation in response to aggregating platelets in porcine femoral veins and its modulation by diet. Circulation. 1989;80(2):401–9.

    Article  CAS  PubMed  Google Scholar 

  21. Komori K, Gloviczki P, Bourchier R, Miller V, Vanhoutte P. Endothelium-dependent vasorelaxations in response to aggregating platelets are impaired in reversed vein grafts. J Vasc Surg. 1990;12:139–47.

    CAS  PubMed  Google Scholar 

  22. Watts S, Cohen M. Vascular 5-HT receptors: pharmacology and pathophysiology of 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2B and 5-HT7 receptors. Neurotransmissions. 1999;15:3–15.

    Google Scholar 

  23. Furuyama T, Komori K, Shimokawa H, Matsumoto Y, Uwatoku T, Hirano K, et al. Long-term inhibition of Rho kinase suppresses intimal thickening in autologous vein grafts in rabbits. J Vasc Surg. 2006;43:1249–56.

    Article  PubMed  Google Scholar 

  24. Kodama A, Komori K, Kajikuri J, Itoh T. Chronic treatment of hydroxytryptamine type 2a receptor antagonist sarpogrelate hydrochloride modulates the vasoreactivity of serotonin in experimental rabbit vein grafts. J Vasc Surg. 2009;50:617–25.

    Article  PubMed  Google Scholar 

  25. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372(6503):231–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hirano K, Hirano M, Kanaide H. Regulation of myosin phosphorylation and myofilament Ca2+ sensitivity in vascular smooth muscle. J Smooth Muscle Res. 2004;40(6):219–36.

    Article  PubMed  Google Scholar 

  27. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;273(5272):245–8.

    Article  CAS  PubMed  Google Scholar 

  28. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res. 2000;261(1):44–51.

    Article  CAS  PubMed  Google Scholar 

  29. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509–14.

    Article  CAS  PubMed  Google Scholar 

  30. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25(9):1767–75.

    Article  CAS  PubMed  Google Scholar 

  31. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000;261(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  32. Lacal JC. Regulation of proliferation and apoptosis by Ras and Rho GTPases through specific phospholipid-dependent signaling. FEBS Lett. 1997;410(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  33. Eto Y, Shimokawa H, Hiroki J, Morishige K, Kandabashi T, Matsumoto Y, et al. Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol Heart Circ Physiol. 2000;278(6):H1744–50.

    CAS  PubMed  Google Scholar 

  34. Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases. J Cardiovasc Pharmacol. 2002;39(3):319–27.

    Article  CAS  PubMed  Google Scholar 

  35. Kandabashi T, Shimokawa H, Mukai Y, Matoba T, Kunihiro I, Morikawa K, et al. Involvement of rho-kinase in agonists-induced contractions of arteriosclerotic human arteries. Arterioscler Thromb Vasc Biol. 2002;22(2):243–8.

    Article  CAS  PubMed  Google Scholar 

  36. Shimokawa H, Morishige K, Miyata K, Kandabashi T, Eto Y, Ikegaki I, et al. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc Res. 2001;51(1):169–77.

    Article  CAS  PubMed  Google Scholar 

  37. Makhoul RG, Davis WS, Mikat EM, McCann RL, Hagen PO. Responsiveness of vein bypass grafts to stimulation with norepinephrine and 5-hydroxytryptamine. J Vasc Surg. 1987;6(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  38. MacAlpin RN. Contribution of dynamic vascular wall thickening to luminal narrowing during coronary arterial constriction. Circulation. 1980;61(2):296–301.

    Article  CAS  PubMed  Google Scholar 

  39. Radic ZS, O’Donohoe MK, Schwartz LB, Stein AD, Mikat EM, McCann RL, et al. Alterations in serotonergic receptor expression in experimental vein grafts. J Vasc Surg. 1991;14(1):40–7.

    Article  CAS  PubMed  Google Scholar 

  40. Saini H, Takeda N, Goyal R, Kumamoto H, Arneja A, Dhalla N. Therapeutic potentials of sarpogrelate in cardiovascular disease. Cardiovasc Drug Rev. 2004;22:27–54.

    Article  CAS  PubMed  Google Scholar 

  41. Nakamura K, Kariyazono H, Masuda H, Sakata R, Yamada K. Effects of sarpogrelate hydrochloride on adenosine diphosphate- or collagen-induced platelet responses in arteriosclerosis obliterans. Blood Coagul Fibrinolysis. 2001;12(5):391–7.

    Article  CAS  PubMed  Google Scholar 

  42. Miyazaki M, Higashi Y, Goto C, Chayama K, Yoshizumi M, Sanada H, et al. Sarpogrelate hydrochloride, a selective 5-HT2A antagonist, improves vascular function in patients with peripheral arterial disease. J Cardiovasc Pharmacol. 2007;49(4):221–7.

    Article  CAS  PubMed  Google Scholar 

  43. Kodama A, Komori K, Hattori K, Yamanouchi D, Kajikuri J, Itoh T. Sarpogrelate hydrochloride reduced intimal hyperplasia in experimental rabbit vein graft. J Vasc Surg. 2009;49:1272–81.

    Article  PubMed  Google Scholar 

  44. Cocks TM, Angus JA. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983;305(5935):627–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Kodama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodama, A., Itoh, T. & Komori, K. Possible roles of 5-HT in vein graft failure due to intimal hyperplasia 5-HT, nitric oxide and vein graft. Surg Today 44, 213–218 (2014). https://doi.org/10.1007/s00595-013-0555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-013-0555-z

Keywords

Navigation