Skip to main content
Log in

Higher circulating levels of non-esterified fatty acids are associated with faster kidney function decline in post-menopausal women with type 2 diabetes: a pilot prospective study

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Currently, there is little and inconsistent evidence regarding the possible adverse effects of circulating levels of non-esterified fatty acids (NEFA) on kidney function decline in patients with type 2 diabetes mellitus (T2DM).

Methods

We followed for a median of 4.6 years 85 post-menopausal women with non-insulin-treated T2DM and preserved kidney function at baseline. Serum NEFA concentrations were measured using an enzymatic colorimetric method. Glomerular filtration rate (eGFR) was estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.

Results

Enrolled patients had a baseline mean eGFRCKD-EPI of 83 ± 12 mL/min/1.73 m2 and a median serum NEFA concentration of 662 uEq/L (interquartile range 524–842 uEq/L). During the follow-up period, 13 patients developed kidney function decline at follow-up (defined as an eGFRCKD-EPI decline ≥ 30% from baseline). In Cox proportional hazards regression analyses, higher serum NEFA levels were significantly associated with an increased risk of developing kidney function decline (adjusted-hazard ratio 3.67, 95% CI 1.64–8.22, p < 0.001; for each 1-SD increment, i.e., 262 uEq/L), even after adjustment for waist circumference, hemoglobin A1c, C-reactive protein, HOMA-estimated insulin resistance, hypertension, dyslipidemia, microalbuminuria, baseline eGFRCKD-EPI, as well as temporal changes in HbA1c levels or the use of renin-angiotensin system inhibitors over the follow-up.

Conclusions

The findings of this exploratory prospective study show that in post-menopausal women with T2DM and preserved kidney function at baseline, higher circulating levels of NEFA were strongly associated with a faster kidney function decline, even after adjustment for established renal risk factors and potential confounders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Restrictions apply to the availability of some or all data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will, on request, detail the restrictions and any conditions under which access to some data may be provided.

References

  1. Ebbert JO, Jensen MD (2013) Fat depots, free fatty acids, and dyslipidemia. Nutrients 5:498–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miles JM, Nelson RH (2007) Contribution of triglyceride-rich lipoproteins to plasma free fatty acids. Horm Metab Res 39:726–729

    Article  CAS  PubMed  Google Scholar 

  3. Lowell BB, Shulman GI (2005) Mitochondrial dysfunction and type 2 diabetes. Science 307:384–387

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Delarue J, Magnan C (2007) Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 10:142–148

    Article  CAS  PubMed  Google Scholar 

  5. Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566

    Article  CAS  PubMed  Google Scholar 

  6. Sieber J, Lindenmeyer MT, Kampe K et al (2010) Regulation of podocyte survival and endoplasmic reticulum stress by fatty acids. Am J Physiol Renal Physiol 299:F821–F829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Djousse L, Khawaja O, Bartz TM et al (2012) Plasma fatty acid-binding protein 4, nonesterified fatty acids, and incident diabetes in older adults. Diabetes Care 35:1701–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pankow JS, Duncan BB, Schmidt MI et al (2004) Fasting plasma free fatty acids and risk of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes Care 27:77–82

    Article  CAS  PubMed  Google Scholar 

  9. Khawaja O, Bartz TM, Ix JH et al (2012) Plasma free fatty acids and risk of atrial fibrillation (from the cardiovascular health study). Am J Cardiol 110:212–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Djousse L, Benkeser D, Arnold A et al (2013) Plasma free fatty acids and risk of heart failure: the cardiovascular health study. Circ Heart Fail 6:964–969

    Article  CAS  PubMed  Google Scholar 

  11. Xiong Z, Xu H, Huang X et al (2015) Nonesterified fatty acids and cardiovascular mortality in elderly men with CKD. Clin J Am Soc Nephrol 10:584–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Walther CP, Ix JH, Biggs ML et al (2021) Nonesterified fatty acids and kidney function decline in older adults: findings from the cardiovascular health study. Am J Kidney Dis 78:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duranton F, Laget J, Gayrard N et al (2019) The CKD plasma lipidome varies with disease severity and outcome. J Clin Lipidol 13(176–85):e8

    Google Scholar 

  14. Baek J, He C, Afshinnia F et al (2022) Lipidomic approaches to dissect dysregulated lipid metabolism in kidney disease. Nat Rev Nephrol 18:38–55

    Article  CAS  PubMed  Google Scholar 

  15. Webster AC, Nagler EV, Morton RL et al (2017) Chronic kidney disease. Lancet 389:1238–1252

    Article  PubMed  Google Scholar 

  16. Romagnani P, Remuzzi G, Glassock R et al (2017) Chronic kidney disease. Nat Rev Dis Primers 3:17088

    Article  PubMed  Google Scholar 

  17. Kalantar-Zadeh K, Jafar TH, Nitsch D et al (2021) Chronic kidney disease. Lancet 398:786–802

    Article  CAS  PubMed  Google Scholar 

  18. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  19. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kerschbaum J, Rudnicki M, Dzien A et al (2020) Intra-individual variability of eGFR trajectories in early diabetic kidney disease and lack of performance of prognostic biomarkers. Sci Rep 10:19743

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambers Heerspink HJ, Tighiouart H, Sang Y et al (2014) GFR decline and subsequent risk of established kidney outcomes: a meta-analysis of 37 randomized controlled trials. Am J Kidney Dis 64:860–866

    Article  PubMed  Google Scholar 

  22. Koska J, Gerstein HC, Beisswenger PJ et al (2022) Advanced glycation end products predict loss of renal function and high-risk chronic kidney disease in type 2 diabetes. Diabetes Care 45:684–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wirthensohn G, Guder WG (1983) Renal lipid metabolism. Miner Electrolyte Metab 9:203–211

    CAS  PubMed  Google Scholar 

  24. Lennon R, Pons D, Sabin MA et al (2009) Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrol Dial Transpl 24:3288–3296

    Article  CAS  Google Scholar 

  25. D’Agati VD, Chagnac A, de Vries AP et al (2016) Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol 12:453–471

    Article  CAS  PubMed  Google Scholar 

  26. Despres JP, Lemieux I (2006) Abdominal obesity and metabolic syndrome. Nature 444:881–887

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Clement LC, Avila-Casado C, Mace C et al (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17:117–122

    Article  CAS  PubMed  Google Scholar 

  28. Turolo S, Edefonti A, Syren ML et al (2018) Fatty acids in nephrotic syndrome and chronic kidney disease. J Ren Nutr 28:145–155

    Article  CAS  PubMed  Google Scholar 

  29. Afshinnia F, Rajendiran TM, He C et al (2021) Circulating free fatty acid and phospholipid signature predicts early rapid kidney function decline in patients with type 1 diabetes. Diabetes Care 44:2098–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Afshinnia F, Nair V, Lin J et al (2019) Increased lipogenesis and impaired beta-oxidation predict type 2 diabetic kidney disease progression in American Indians. JCI Insight 4:e130317

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nagata M (2016) Podocyte injury and its consequences. Kidney Int 89:1221–1230

    Article  CAS  PubMed  Google Scholar 

  32. de Vries AP, Ruggenenti P, Ruan XZ et al (2014) Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease. Lancet Diabetes Endocrinol 2:417–426

    Article  PubMed  Google Scholar 

  33. Ko SH, Kim HS (2020) Menopause-associated lipid metabolic disorders and foods beneficial for postmenopausal women. Nutrients 12:202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

GT is partly supported by grants from the University School of Medicine of Verona, Verona, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Mantovani.

Ethics declarations

Conflict of interest

All authors do not have any conflicts of interest to declare.

Ethical approval

The study was performed according to the Declaration of Helsinki. The local Ethics Committee approved the study protocol. All participants gave their written informed consent for participation in this research.

Additional information

This article belongs to the Topical Collection “Diabetic Nephropathy”, managed by Giuseppe Pugliese.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 35 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantovani, A., Csermely, A., Cappelli, D. et al. Higher circulating levels of non-esterified fatty acids are associated with faster kidney function decline in post-menopausal women with type 2 diabetes: a pilot prospective study. Acta Diabetol 61, 281–288 (2024). https://doi.org/10.1007/s00592-023-02198-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-023-02198-6

Keywords

Navigation