Skip to main content

Advertisement

Log in

Imaging in experimental models of diabetes

  • Review Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Translational medicine, experimental medicine and experimental animal models, in particular mice and rats, represent a multidisciplinary field that has made it possible to achieve, in the last decades, important scientific progress. In this review, we have summarized the most frequently used imaging animal models, such as ultrasound (US), micro-CT, MRI and the optical imaging methods, and their main implications in diagnostic and therapeutic fields, with a particular focus on diabetes mellitus, a multifactorial disease extremely widespread among the general population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

PubMed; Scopus.

Code availability

None required for a review article.

References

  1. Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15:539–553. https://doi.org/10.1002/(SICI)1096-9136(199807)15:7%3c539::AID-DIA668%3e3.0.CO;2-S

    Article  PubMed  CAS  Google Scholar 

  2. Chawla A, Chawla R, Jaggi S (2016) Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J Endocr Metab 20:546. https://doi.org/10.4103/2230-8210.183480

    Article  CAS  Google Scholar 

  3. American Diabetes Association (2007) Standards of medical care in diabetes–2007. Diabetes Care 30:S4–S41. https://doi.org/10.2337/dc07-S004

    Article  CAS  Google Scholar 

  4. American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32:S62–S67. https://doi.org/10.2337/dc09-S062

    Article  PubMed Central  Google Scholar 

  5. Woolf SH (2008) The meaning of translational research and why it matters. JAMA. https://doi.org/10.1001/jama.2007.26

    Article  PubMed  Google Scholar 

  6. Cohrs RJ, Martin T, Ghahramani P et al (2014) Translational medicine definition by the European society for translational medicine. Eur J Mol Clin Med 2:86. https://doi.org/10.1016/j.nhtm.2014.12.002

    Article  Google Scholar 

  7. Sardanelli F (2017) Trends in radiology and experimental research. Eur Radiol Exp 1:1. https://doi.org/10.1186/s41747-017-0006-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cossu G, Previtali SC, Napolitano S et al (2016) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 8(12):1470–1471. https://doi.org/10.15252/emmm.201607129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Venturini M, Bergamini A, Perani L et al (2018) Contrast-enhanced ultrasound for ovary assessment in a murine model: preliminary findings on the protective role of a gonadotropin-releasing hormone analogue from chemotherapy-induced ovarian damage. Eur Radiol Exp 2:44. https://doi.org/10.1186/s41747-018-0076-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dall’Ara E, Boudiffa M, Taylor C et al (2016) Longitudinal imaging of the ageing mouse. Mech Ageing Dev 160:93–116. https://doi.org/10.1016/j.mad.2016.08.001

    Article  PubMed  Google Scholar 

  11. Vandamme T (2014) Use of rodents as models of human diseases. J Pharm Bioall Sci 6:2. https://doi.org/10.4103/0975-7406.124301

    Article  CAS  Google Scholar 

  12. Ziegler M, Hohmann JD, Searle AK et al (2017) A single-chain antibody-CD39 fusion protein targeting activated platelets protects from cardiac ischaemia/reperfusion injury. Eur Heart J. https://doi.org/10.1093/eurheartj/ehx218

    Article  PubMed  Google Scholar 

  13. Suresh S, Alvarez JC, Dey S, Noguchi CT (2020) Erythropoietin-induced changes in bone and bone marrow in mouse models of diet-induced obesity. IJMS 21:1657. https://doi.org/10.3390/ijms21051657

    Article  PubMed Central  CAS  Google Scholar 

  14. Shi T, Lu K, Shen S et al (2017) Fenofibrate decreases the bone quality by down regulating Runx2 in high-fat-diet induced Type 2 diabetes mellitus mouse model. Lipids Health Dis 16:201. https://doi.org/10.1186/s12944-017-0592-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Salas IH, Weerasekera A, Ahmed T et al (2018) High fat diet treatment impairs hippocampal long-term potentiation without alterations of the core neuropathological features of Alzheimer disease. Neurobiol Dis 113:82–96. https://doi.org/10.1016/j.nbd.2018.02.001

    Article  PubMed  CAS  Google Scholar 

  16. Tuckett AZ, Thornton RH, O’Reilly RJ et al (2017) Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency. J Hematol Oncol 10:109. https://doi.org/10.1186/s13045-017-0478-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zou T, Zhu M, Ma Y-C et al (2018) MicroRNA-410-5p exacerbates high-fat diet-induced cardiac remodeling in mice in an endocrine fashion. Sci Rep 8:8780. https://doi.org/10.1038/s41598-018-26646-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhang G, Li H, Zhao W et al (2020) miR-205 regulates bone turnover in elderly female patients with type 2 diabetes mellitus through targeted inhibition of Runx2. Exp Ther Med 20:1557–1565. https://doi.org/10.3892/etm.2020.8867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Perlman RL (2016) Mouse models of human disease: an evolutionary perspective. EMPH. https://doi.org/10.1093/emph/eow014

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Soroush F, Long J et al (2017) Murine glomerular transcriptome links endothelial cell-specific molecule-1 deficiency with susceptibility to diabetic nephropathy. PLoS ONE 12:e0185250. https://doi.org/10.1371/journal.pone.0185250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Senchenkova EY, Ansari J, Becker F et al (2019) Novel role for the AnxA1-Fpr2/ALX signaling axis as a key regulator of platelet function to promote resolution of inflammation. Circulation 140:319–335. https://doi.org/10.1161/CIRCULATIONAHA.118.039345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Singh SP, Schragenheim J, Cao J et al (2016) PGC-1 alpha regulates HO-1 expression, mitochondrial dynamics and biogenesis: role of epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 125:8–18. https://doi.org/10.1016/j.prostaglandins.2016.07.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sebo ZL, Rodeheffer MS (2021) Testosterone metabolites differentially regulate obesogenesis and fat distribution. Mol Metab 44:101141. https://doi.org/10.1016/j.molmet.2020.101141

    Article  PubMed  CAS  Google Scholar 

  24. Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367. https://doi.org/10.1038/nrg2091

    Article  PubMed  CAS  Google Scholar 

  25. Wang M, Sun Y, Cao X et al (2018) Graphene quantum dots against human IAPP aggregation and toxicity in vivo. Nanoscale 10:19995–20006. https://doi.org/10.1039/C8NR07180B

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Oka T, Nishimura Y, Zang L et al (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol 10:21. https://doi.org/10.1186/1472-6793-10-21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Taveau C, Chollet C, Bichet DG et al (2017) Acute and chronic hyperglycemic effects of vasopressin in normal rats: involvement of V 1A receptors. Am J Physiol-Endocrinol Metab 312:E127–E135. https://doi.org/10.1152/ajpendo.00269.2016

    Article  PubMed  Google Scholar 

  28. Zhang M, Yu W-Z, Shen X-T et al (2016) Advanced interfere treatment of diabetic cardiomyopathy rats by aFGF-loaded heparin-modified microbubbles and UTMD technique. Cardiovasc Drugs Ther 30:247–261. https://doi.org/10.1007/s10557-016-6639-4

    Article  PubMed  CAS  Google Scholar 

  29. Yang Y, Wang Y, Kong Y et al (2018) Carnosine prevents type 2 diabetes-induced osteoarthritis through the ROS/NF-κB pathway. Front Pharmacol 9:598. https://doi.org/10.3389/fphar.2018.00598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Zheng W, Li D, Gao X et al (2018) Carvedilol alleviates diabetic cardiomyopathy in diabetic rats. Exp Ther Med. https://doi.org/10.3892/etm.2018.6954

    Article  PubMed  PubMed Central  Google Scholar 

  31. Vicente A, Bravo-González L-A, Navarro JA et al (2021) Effects of diabetes on oxidative stress, periodontal ligament fiber orientation, and matrix metalloproteinase 8 and 9 expressions during orthodontic tooth movement. Clin Oral Invest 25:1383–1394. https://doi.org/10.1007/s00784-020-03446-7

    Article  Google Scholar 

  32. Serizawa K, Yogo K, Tashiro Y et al (2017) Epoetin beta pegol ameliorates flow-mediated dilation with improving endothelial nitric oxide synthase coupling state in nonobese diabetic rats. Cardiovasc Ther 35:e12250. https://doi.org/10.1111/1755-5922.12250

    Article  CAS  Google Scholar 

  33. Rong L, Sun S, Zhu F et al (2020) Expression of NLRP1 inflammasomes in myocardial tissue of diabetic rats. Nan Fang Yi Ke Da Xue Xue Bao 40:87–92. https://doi.org/10.12122/j.issn.1673-4254.2020.01.14

    Article  PubMed  Google Scholar 

  34. Jacob HJ (1999) Functional genomics and rat models. Genome Res 9:1013–1016. https://doi.org/10.1101/gr.9.11.1013

    Article  PubMed  CAS  Google Scholar 

  35. Yue G, Edani H, Sullivan A et al (2020) Is maxillary diastema an appropriate site for implantation in rats? Int J Implant Dent 6:8. https://doi.org/10.1186/s40729-019-0203-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu X, Fang K, Wang L et al (2019) Local application of semaphorin 3A combined with adipose-derived stem cell sheet and anorganic bovine bone granules enhances bone regeneration in type 2 diabetes mellitus rats. Stem Cells Int 2019:1–14. https://doi.org/10.1155/2019/2506463

    Article  CAS  Google Scholar 

  37. Xing H, Wang X, Xiao S et al (2017) Osseointegration of layer-by-layer polyelectrolyte multilayers loaded with IGF1 and coated on titanium implant under osteoporotic condition. IJN 12:7709–7720. https://doi.org/10.2147/IJN.S148001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sheng M, Huang Z, Pan L et al (2017) SOCS2 exacerbates myocardial injury induced by ischemia/reperfusion in diabetic mice and H9c2 cells through inhibiting the JAK-STAT-IGF-1 pathway. Life Sci 188:101–109. https://doi.org/10.1016/j.lfs.2017.08.036

    Article  PubMed  CAS  Google Scholar 

  39. Bryda EC (2013) The mighty mouse: the impact of rodents on advances in biomedical research. Mo Med 110:207–211

    PubMed  PubMed Central  Google Scholar 

  40. Xiong Y, Aroor AR, Ramirez-Perez FI et al (2020) Western diet induces renal artery endothelial stiffening that is dependent on the epithelial Na + channel. Am J Physiol-Renal Physiol 318:F1220–F1228. https://doi.org/10.1152/ajprenal.00517.2019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Somashekar ST, Sammour I, Huang J et al (2017) Intra-amniotic soluble endoglin impairs lung development in neonatal rats. Am J Respir Cell Mol Biol 57:468–476. https://doi.org/10.1165/rcmb.2016-0165OC

    Article  PubMed  CAS  Google Scholar 

  42. Dolenšek J, Rupnik MS, Stožer A (2015) Structural similarities and differences between the human and the mouse pancreas. Islets 7:e1024405. https://doi.org/10.1080/19382014.2015.1024405

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kennedy AJ, Ellacott KLJ, King VL, Hasty AH (2010) Mouse models of the metabolic syndrome. Dis Model Mech 3:156–166. https://doi.org/10.1242/dmm.003467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Roth DM, Swaney JS, Dalton ND et al (2002) Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol 282:H2134-2140. https://doi.org/10.1152/ajpheart.00845.2001

    Article  PubMed  CAS  Google Scholar 

  45. Renault G, Bonnin P, Marchiol-Fournigault C et al (2006) L’échographie haute résolution de la souris. J Radiol 87:1937–1945. https://doi.org/10.1016/S0221-0363(06)74179-8

    Article  PubMed  CAS  Google Scholar 

  46. Foster FS, Zhang MY, Zhou YQ et al (2002) A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol 28:1165–1172. https://doi.org/10.1016/s0301-5629(02)00567-7

    Article  PubMed  CAS  Google Scholar 

  47. Akirav C, Lu Y, Mu J et al (2005) Ultrasonic detection and developmental changes in calcification of the placenta during normal pregnancy in mice. Placenta 26:129–137. https://doi.org/10.1016/j.placenta.2004.05.010

    Article  PubMed  CAS  Google Scholar 

  48. Brown AS, Leamen L, Cucevic V, Foster FS (2005) Quantitation of hemodynamic function during developmental vascular regression in the mouse eye. Invest Ophthalmol Vis Sci 46:2231–2237. https://doi.org/10.1167/iovs.04-0848

    Article  PubMed  Google Scholar 

  49. Curnis F, Dallatomasina A, Bianco M et al (2016) Regulation of tumor growth by circulating full-length chromogranin A. Oncotarget 7:72716–72732. https://doi.org/10.18632/oncotarget.12237

    Article  PubMed  PubMed Central  Google Scholar 

  50. Catucci M, Zanoni I, Draghici E et al (2014) Wiskott-Aldrich syndrome protein deficiency in natural killer and dendritic cells affects antitumor immunity. Eur J Immunol 44:1039–1045. https://doi.org/10.1002/eji.201343935

    Article  PubMed  CAS  Google Scholar 

  51. Pandit H, Tinney JP, Li Y et al (2019) Utilizing contrast-enhanced ultrasound imaging for evaluating fatty liver disease progression in pre-clinical mouse models. Ultrasound Med Biol 45:549–557. https://doi.org/10.1016/j.ultrasmedbio.2018.10.011

    Article  PubMed  Google Scholar 

  52. Weissleder R (2002) Scaling down imaging: molecular mapping of cancer in mice. Nat Rev Cancer 2:11–18. https://doi.org/10.1038/nrc701

    Article  PubMed  CAS  Google Scholar 

  53. Dugnani E, Pasquale V, Marra P et al (2018) Four-class tumor staging for early diagnosis and monitoring of murine pancreatic cancer using magnetic resonance and ultrasound. Carcinogenesis 39:1197–1206. https://doi.org/10.1093/carcin/bgy094

    Article  PubMed  CAS  Google Scholar 

  54. Wirtzfeld LA, Wu G, Bygrave M et al (2005) A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res 65:6337–6345. https://doi.org/10.1158/0008-5472.CAN-05-0414

    Article  PubMed  CAS  Google Scholar 

  55. Denis F, Bougnoux P, de Poncheville L et al (2002) In vivo quantitation of tumour vascularisation assessed by Doppler sonography in rat mammary tumours. Ultrasound Med Biol 28:431–437. https://doi.org/10.1016/s0301-5629(02)00478-7

    Article  PubMed  Google Scholar 

  56. Foster FS, Burns PN, Simpson DH et al (2000) Ultrasound for the visualization and quantification of tumor microcirculation. Cancer Metastasis Rev 19:131–138. https://doi.org/10.1023/a:1026541510549

    Article  PubMed  CAS  Google Scholar 

  57. Xu H, Ma Z, Lu S et al (2017) Renal resistive index as a novel indicator for renal complications in high-fat diet-fed mice. Kidney Blood Press Res 42:1128–1140. https://doi.org/10.1159/000485781

    Article  PubMed  CAS  Google Scholar 

  58. Ramirez DG, Abenojar E, Hernandez C et al (2020) Contrast-enhanced ultrasound with sub-micron sized contrast agents detects insulitis in mouse models of type1 diabetes. Nat Commun 11:2238. https://doi.org/10.1038/s41467-020-15957-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Roberts FR, Hupple C, Norowski E et al (2017) Possible type 1 diabetes risk prediction: Using ultrasound imaging to assess pancreas inflammation in the inducible autoimmune diabetes BBDR model. PLoS ONE 12:e0178641. https://doi.org/10.1371/journal.pone.0178641

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Tang Y, Zhao Y, Lin W (2020) Preparation of robust fluorescent probes for tracking endogenous formaldehyde in living cells and mouse tissue slices. Nat Protoc 15:3499–3526. https://doi.org/10.1038/s41596-020-0384-7

    Article  PubMed  CAS  Google Scholar 

  61. Tang A, Destrempes F, Kazemirad S et al (2019) Quantitative ultrasound and machine learning for assessment of steatohepatitis in a rat model. Eur Radiol 29:2175–2184. https://doi.org/10.1007/s00330-018-5915-z

    Article  PubMed  Google Scholar 

  62. Yue T, Xu H-L, Chen P-P et al (2017) Combination of coenzyme Q10-loaded liposomes with ultrasound targeted microbubbles destruction (UTMD) for early theranostics of diabetic nephropathy. Int J Pharm 528:664–674. https://doi.org/10.1016/j.ijpharm.2017.06.070

    Article  PubMed  CAS  Google Scholar 

  63. Yang X-F, Wang H-Y, Lu W-L et al (2020) Direct reprogramming of hepatocytes into insulin-producing cells for anti-diabetic treatment by ultrasound-targeted microbubble destruction enhanced hydrodynamic gene delivery. Am J Transl Res 12:7275–7286

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Wu K, Chiu Y, Yao C et al (2019) Effect of extracorporeal low-energy shock wave on diabetic gastroparesis in a rat model. J Gastroenterol Hepatol 34:720–727. https://doi.org/10.1111/jgh.14368

    Article  PubMed  CAS  Google Scholar 

  65. Wang X, Searle AK, Hohmann JD et al (2018) Dual-targeted theranostic delivery of miRs arrests abdominal aortic aneurysm development. Mol Ther 26:1056–1065. https://doi.org/10.1016/j.ymthe.2018.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Wang X, Gkanatsas Y, Palasubramaniam J et al (2016) Thrombus-targeted theranostic microbubbles: a new technology towards concurrent rapid ultrasound diagnosis and bleeding-free fibrinolytic treatment of thrombosis. Theranostics 6:726–738. https://doi.org/10.7150/thno.14514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Suarez Castellanos I, Jeremic A, Cohen J, Zderic V (2017) Ultrasound stimulation of insulin release from pancreatic beta cells as a potential novel treatment for type 2 diabetes. Ultrasound Med Biol 43:1210–1222. https://doi.org/10.1016/j.ultrasmedbio.2017.01.007

    Article  PubMed  Google Scholar 

  68. Clark DP, Badea CT (2014) Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med 30:619–634. https://doi.org/10.1016/j.ejmp.2014.05.011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Badea C, Hedlund LW, Johnson GA (2004) Micro-CT with respiratory and cardiac gating. Med Phys 31:3324–3329. https://doi.org/10.1118/1.1812604

    Article  PubMed  CAS  Google Scholar 

  70. Holdsworth DW, Thornton MM (2002) Micro-CT in small animal and specimen imaging. Trends Biotechnol 20:S34–S39. https://doi.org/10.1016/S0167-7799(02)02004-8

    Article  Google Scholar 

  71. Caro AC, Hankenson FC, Marx JO (2013) Comparison of thermoregulatory devices used during anesthesia of C57BL/6 mice and correlations between body temperature and physiologic parameters. J Am Assoc Lab Anim Sci 52:577–583

    PubMed  PubMed Central  CAS  Google Scholar 

  72. de Lin M, Ning L, Badea CT et al (2008) A high-precision contrast injector for small animal x-ray digital subtraction angiography. IEEE Trans Biomed Eng 55:1082–1091. https://doi.org/10.1109/TBME.2007.909541

    Article  PubMed  PubMed Central  Google Scholar 

  73. Feldkamp LA, Goldstein SA, Parfitt AM et al (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11. https://doi.org/10.1002/jbmr.5650040103

    Article  PubMed  CAS  Google Scholar 

  74. Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24–29. https://doi.org/10.1007/BF02509542

    Article  PubMed  Google Scholar 

  75. Zhang H, Liu J, Qin G et al (2017) Melanocortin 4 receptor activation attenuates mitochondrial dysfunction in skeletal muscle of diabetic rats. J Cell Biochem 118:4072–4079. https://doi.org/10.1002/jcb.26062

    Article  PubMed  CAS  Google Scholar 

  76. Zhang W-L, Meng H-Z, Yang R-F et al (2016) Melatonin suppresses autophagy in type 2 diabetic osteoporosis. Oncotarget 7:52179–52194. https://doi.org/10.18632/oncotarget.10538

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang L, Zheng L-L, Chen Y et al (2016) Study on the characteristics of bone in type-2 diabetic rats by micro-CT. Sichuan Da Xue Xue Bao Yi Xue Ban 47:727–731

    PubMed  Google Scholar 

  78. Mohsin S, Kaimala S, Sunny JJ et al (2019) Type 2 diabetes mellitus increases the risk to hip fracture in postmenopausal osteoporosis by deteriorating the trabecular bone microarchitecture and bone mass. J Diabetes Res 2019:1–10. https://doi.org/10.1155/2019/3876957

    Article  CAS  Google Scholar 

  79. Mujica LKS, Glanzner WG, Prante AL et al (2020) Trabecular bone is increased in a rat model of polycystic ovary syndrome. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-1284-5491

    Article  PubMed  Google Scholar 

  80. Votava L, Schwartz AG, Harasymowicz NS et al (2019) Effects of dietary fatty acid content on humeral cartilage and bone structure in a mouse model of diet-induced obesity. J Orthop Res 37:779–788. https://doi.org/10.1002/jor.24219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Phongkitkarun S, Kobayashi S, Kan Z et al (2004) Quantification of angiogenesis by functional computed tomography in a Matrigel model in rats. Acad Radiol 11:573–582. https://doi.org/10.1016/S1076-6332(03)00728-1

    Article  PubMed  Google Scholar 

  82. Toyota E, Ogasawara Y, Fujimoto K et al (2004) Global heterogeneity of glomerular volume distribution in early diabetic nephropathy. Kidney Int 66:855–861. https://doi.org/10.1111/j.1523-1755.2004.00816.x

    Article  PubMed  Google Scholar 

  83. Turnbull DH, Mori S (2007) MRI in mouse developmental biology. NMR Biomed 20:265–274. https://doi.org/10.1002/nbm.1146

    Article  PubMed  PubMed Central  Google Scholar 

  84. von Morze C, Chang G-Y, Larson PEZ et al (2017) Detection of localized changes in the metabolism of hyperpolarized gluconeogenic precursors 13 C-lactate and 13 C-pyruvate in kidney and liver: Localized Changes in Hyperpolarized Lactate Metabolism. Magn Reson Med 77:1429–1437. https://doi.org/10.1002/mrm.26245

    Article  CAS  Google Scholar 

  85. Zhou Y, van Zijl PCM, Xu X et al (2020) Magnetic resonance imaging of glycogen using its magnetic coupling with water. Proc Natl Acad Sci USA 117:3144–3149. https://doi.org/10.1073/pnas.1909921117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Thaiss WM, Gatidis S, Sartorius T et al (2021) Noninvasive, longitudinal imaging-based analysis of body adipose tissue and water composition in a melanoma mouse model and in immune checkpoint inhibitor-treated metastatic melanoma patients. Cancer Immunol Immunother 70:1263–1275. https://doi.org/10.1007/s00262-020-02765-8

    Article  PubMed  CAS  Google Scholar 

  87. Mustafi D, Fernandez S, Markiewicz E et al (2017) MRI reveals increased tumorigenesis following high fat feeding in a mouse model of triple-negative breast cancer. NMR Biomed 30:e3758. https://doi.org/10.1002/nbm.3758

    Article  CAS  Google Scholar 

  88. Mustafi D, Valek R, Fitch M et al (2020) Magnetic resonance angiography reveals increased arterial blood supply and tumorigenesis following high fat feeding in a mouse model of triple-negative breast cancer. NMR Biomed. https://doi.org/10.1002/nbm.4363

    Article  PubMed  PubMed Central  Google Scholar 

  89. Toma I, Kim PJ, Dash R et al (2016) Telmisartan in the diabetic murine model of acute myocardial infarction: dual contrast manganese-enhanced and delayed enhancement MRI evaluation of the peri-infarct region. Cardiovasc Diabetol 15:24. https://doi.org/10.1186/s12933-016-0348-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Qi H, Nielsen PM, Schroeder M et al (2018) Acute renal metabolic effect of metformin assessed with hyperpolarised MRI in rats. Diabetologia 61:445–454. https://doi.org/10.1007/s00125-017-4445-6

    Article  PubMed  CAS  Google Scholar 

  91. Yan YY, Hartono S, Hennedige T et al (2017) Intravoxel incoherent motion and diffusion tensor imaging of early renal fibrosis induced in a murine model of streptozotocin induced diabetes. Magn Reson Imaging 38:71–76. https://doi.org/10.1016/j.mri.2016.12.023

    Article  PubMed  CAS  Google Scholar 

  92. Wang Q, Guo C, Zhang L et al (2018) BOLD MRI to evaluate early development of renal injury in a rat model of diabetes. J Int Med Res 46:1391–1403. https://doi.org/10.1177/0300060517743826

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tristão Pereira C, Diao Y, Yin T et al (2021) Synchronous nonmonotonic changes in functional connectivity and white matter integrity in a rat model of sporadic Alzheimer’s disease. Neuroimage 225:117498. https://doi.org/10.1016/j.neuroimage.2020.117498

    Article  PubMed  CAS  Google Scholar 

  94. Wang S, Hua Z, Fan D et al (2019) Gadolinium retention and clearance in the diabetic brain after administrations of gadodiamide, gadopentetate dimeglumine, and gadoterate meglumine in a rat model. Biomed Res Int 2019:1–12. https://doi.org/10.1155/2019/3901907

    Article  CAS  Google Scholar 

  95. Younis FM, Blumenthal-Katzir T, Hollander K et al (2016) Telmisartan-mediated metabolic profile conferred brain protection in diabetic hypertensive rats as evidenced by magnetic resonance imaging, behavioral studies and histology. Eur J Pharmacol 789:88–97. https://doi.org/10.1016/j.ejphar.2016.07.021

    Article  PubMed  CAS  Google Scholar 

  96. Qiao J, Lawson CM, Rentrup KFG et al (2020) Evaluating blood–brain barrier permeability in a rat model of type 2 diabetes. J Transl Med 18:256. https://doi.org/10.1186/s12967-020-02428-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang P, Goodwill PW, Pandit P et al (2018) Magnetic particle imaging of islet transplantation in the liver and under the kidney capsule in mouse models. Quant Imaging Med Surg 8:114–122. https://doi.org/10.21037/qims.2018.02.06

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang P, Liu Q, Zhao H et al (2020) miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 10:5302. https://doi.org/10.1038/s41598-020-62269-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Shuboni-Mulligan DD, Parys M, Blanco-Fernandez B et al (2019) Dynamic contrast-enhanced MRI of OATP dysfunction in diabetes. Diabetes 68:271–280. https://doi.org/10.2337/db18-0525

    Article  PubMed  CAS  Google Scholar 

  100. Ollinger JM, Fessler JA (1997) Positron-emission tomography. IEEE Signal Process Mag 14:43–55. https://doi.org/10.1109/79.560323

    Article  Google Scholar 

  101. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci 97:9226–9233. https://doi.org/10.1073/pnas.97.16.9226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Zhao Q, Zhou J, Pan Y et al (2020) The difference between steroid diabetes mellitus and type 2 diabetes mellitus: a whole-body 18F-FDG PET/CT study. Acta Diabetol 57:1383–1393. https://doi.org/10.1007/s00592-020-01566-w

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Virta J, Hellberg S, Liljenbäck H et al (2020) Effects of dipeptidyl peptidase 4 inhibition on inflammation in atherosclerosis: a 18F-fluorodeoxyglucose study of a mouse model of atherosclerosis and type 2 diabetes. Atherosclerosis 305:64–72. https://doi.org/10.1016/j.atherosclerosis.2020.03.029

    Article  PubMed  CAS  Google Scholar 

  104. Zhang Y, Song K, Qi G et al (2020) Adipose-derived exosomal miR-210/92a cluster inhibits adipose browning via the FGFR-1 signaling pathway in high-altitude hypoxia. Sci Rep 10:14390. https://doi.org/10.1038/s41598-020-71345-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wang Z, Xu X, Liu Y et al (2018) Assessment of the aging of the brown adipose tissue by 1 8 F-FDG PET/CT imaging in the progeria mouse model Lmna −/−. Contrast Media Mol Imaging 2018:1–9. https://doi.org/10.1155/2018/8327089

    Article  CAS  Google Scholar 

  106. Werner RA, Eissler C, Hayakawa N et al (2018) Left ventricular diastolic dysfunction in a rat model of diabetic cardiomyopathy using ECG-gated 18F-FDG PET. Sci Rep 8:17631. https://doi.org/10.1038/s41598-018-35986-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wang P, Su C, Feng H et al (2017) Curcumin regulates insulin pathways and glucose metabolism in the brains of APPswe/PS1dE9 mice. Int J Immunopathol Pharmacol 30:25–43. https://doi.org/10.1177/0394632016688025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Templin AT, Meier DT, Willard JR et al (2018) Use of the PET ligand florbetapir for in vivo imaging of pancreatic islet amyloid deposits in hIAPP transgenic mice. Diabetologia 61:2215–2224. https://doi.org/10.1007/s00125-018-4695-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Velikyan I, Haack T, Bossart M et al (2019) First-in-class positron emission tomography tracer for the glucagon receptor. EJNMMI Res 9:17. https://doi.org/10.1186/s13550-019-0482-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Son N-H, Basu D, Samovski D et al (2018) Endothelial cell CD36 optimizes tissue fatty acid uptake. J Clin Investig 128:4329–4342. https://doi.org/10.1172/JCI99315

    Article  PubMed  PubMed Central  Google Scholar 

  111. Holly TA, Abbott BG, Al-Mallah M et al (2010) Single photon-emission computed tomography. J Nucl Cardiol 17:941–973. https://doi.org/10.1007/s12350-010-9246-y

    Article  PubMed  Google Scholar 

  112. Willekens SMA, van der Kroon I, Joosten L et al (2016) SPECT of Transplanted islets of langerhans by dopamine 2 receptor targeting in a rat model. Mol Pharm 13:85–91. https://doi.org/10.1021/acs.molpharmaceut.5b00518

    Article  PubMed  CAS  Google Scholar 

  113. Wall JS, Williams A, Richey T et al (2017) Specific amyloid binding of polybasic peptides in vivo is retained by β-sheet conformers but lost in the disrupted coil and all D-amino acid variants. Mol Imaging Biol 19:714–722. https://doi.org/10.1007/s11307-017-1063-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Murakami T, Fujimoto H, Fujita N et al (2019) Noninvasive evaluation of GPR119 agonist effects on β-cell mass in diabetic male mice using 111In-exendin-4 SPECT/CT. Endocrinology 160:2959–2968. https://doi.org/10.1210/en.2019-00556

    Article  PubMed  CAS  Google Scholar 

  115. Sharpe J (2003) Optical projection tomography as a new tool for studying embryo anatomy. J Anatomy 202:175–181. https://doi.org/10.1046/j.1469-7580.2003.00155.x

    Article  Google Scholar 

  116. Mezzanotte L, van’t Root M, Karatas H et al (2017) In vivo molecular bioluminescence imaging: new tools and applications. Trends Biotechnol 35:640–652. https://doi.org/10.1016/j.tibtech.2017.03.012

    Article  PubMed  CAS  Google Scholar 

  117. Mezzapelle R, Rrapaj E, Gatti E et al (2016) Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells. Sci Rep 6:22850. https://doi.org/10.1038/srep22850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Stacer AC, Nyati S, Moudgil P et al (2013) NanoLuc reporter for dual luciferase imaging in living animals. Mol Imaging 12:1–13

    Article  CAS  Google Scholar 

  119. Darne C, Lu Y, Sevick-Muraca EM (2014) Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update. Phys Med Biol 59:R1-64. https://doi.org/10.1088/0031-9155/59/1/R1

    Article  PubMed  CAS  Google Scholar 

  120. Saif M, Kwanten WJ, Carr JA et al (2020) Non-invasive monitoring of chronic liver disease via near-infrared and shortwave-infrared imaging of endogenous lipofuscin. Nat Biomed Eng 4:801–813. https://doi.org/10.1038/s41551-020-0569-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Qiao Q, Song YL, Li FL (2018) Semaphorin 3A-stimulated bone marrow mesenchymal stem cells sheets promotes osteogenesis of type 2 diabetic rat. Zhonghua Kou Qiang Yi Xue Za Zhi 53:333–338. https://doi.org/10.3760/cma.j.issn.1002-0098.2018.05.009

    Article  PubMed  CAS  Google Scholar 

  122. Virostko J, Radhika A, Poffenberger G et al (2013) Bioluminescence imaging reveals dynamics of beta cell loss in the non-obese diabetic (NOD) mouse model. PLoS ONE 8:e57784. https://doi.org/10.1371/journal.pone.0057784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Virostko J, Radhika A, Poffenberger G et al (2010) Bioluminescence imaging in mouse models quantifies beta cell mass in the pancreas and after islet transplantation. Mol Imaging Biol 12:42–53. https://doi.org/10.1007/s11307-009-0240-1

    Article  PubMed  Google Scholar 

  124. Nishimura W, Sakaue-Sawano A, Takahashi S et al (2018) Optical clearing of the pancreas for visualization of mature β-cells and vessels in mice. Islets 10:e1451282. https://doi.org/10.1080/19382014.2018.1451282

    Article  PubMed  PubMed Central  Google Scholar 

  125. Williams IM, Valenzuela FA, Kahl SD et al (2018) Insulin exits skeletal muscle capillaries by fluid-phase transport. J Clin Investig 128:699–714. https://doi.org/10.1172/JCI94053

    Article  PubMed  PubMed Central  Google Scholar 

  126. Reissaus CA, Piñeros AR, Twigg AN et al (2019) A versatile, portable intravital microscopy platform for studying beta-cell biology in vivo. Sci Rep 9:8449. https://doi.org/10.1038/s41598-019-44777-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Taghian T, Metelev VG, Zhang S, Bogdanov AA (2020) Imaging NF-κB activity in a murine model of early stage diabetes. FASEB j 34:1198–1210. https://doi.org/10.1096/fj.201801147R

    Article  PubMed  CAS  Google Scholar 

  128. Taylor S, Mehina E, White E et al (2018) Suppressing interferon-γ stimulates microglial responses and repair of microbleeds in the diabetic brain. J Neurosci 38:8707–8722. https://doi.org/10.1523/JNEUROSCI.0734-18.2018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Dabbah MA, Graham J, Petropoulos IN et al (2011) Automatic analysis of diabetic peripheral neuropathy using multi-scale quantitative morphology of nerve fibres in corneal confocal microscopy imaging. Med Image Anal 15:738–747. https://doi.org/10.1016/j.media.2011.05.016

    Article  PubMed  CAS  Google Scholar 

  130. Bond J, Green C, Donaldson P, Kistler J (1996) Liquefaction of cortical tissue in diabetic and galactosemic rat lenses defined by confocal laser scanning microscopy. Invest Ophthalmol Vis Sci 37:1557–1565

    PubMed  CAS  Google Scholar 

  131. Papanas N, Ziegler D (2015) Corneal confocal microscopy: recent progress in the evaluation of diabetic neuropathy. J Diabetes Invest 6:381–389. https://doi.org/10.1111/jdi.12335

    Article  Google Scholar 

  132. Ahlgren U, Gotthardt M (2010) Approaches for imaging islets: recent advances and future prospects. In: Islam MdS (ed) The islets of langerhans. Springer Netherlands, Dordrecht, pp 39–57

    Chapter  Google Scholar 

  133. Yadav SPS, Sandoval RM, Zhao J et al (2021) Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. Am J Physiol-Renal Physiol 320:F114–F129. https://doi.org/10.1152/ajprenal.00428.2020

    Article  PubMed  CAS  Google Scholar 

  134. Yang S-N, Berggren P-O (2019) The eye as a novel imaging site in diabetes research. Pharmacol Ther 197:103–121. https://doi.org/10.1016/j.pharmthera.2019.01.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. De Dominicis C, Perrotta P, Dall’Angelo S et al (2020) [18F]ZCDD083: a PFKFB3-targeted PET tracer for atherosclerotic plaque imaging. ACS Med Chem Lett 11:933–939. https://doi.org/10.1021/acsmedchemlett.9b00677

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Festing MFW (2004) Refinement and reduction through the control of variation. Altern Lab Anim 32(Suppl 1A):259–263. https://doi.org/10.1177/026119290403201s43

    Article  PubMed  CAS  Google Scholar 

  137. Parker RMA, Browne WJ (2014) The place of experimental design and statistics in the 3Rs. ILAR J 55:477–485. https://doi.org/10.1093/ilar/ilu044

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

None required for a review article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Coppola.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

None required for a review article.

Consent to participate

None required for a review article.

Consent for publication

None required for a review article.

Additional information

Managed by Antonio Secchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

592_2021_1826_MOESM1_ESM.gif

Supplementary Animated Figure S1. Ultrasound imaging of the pancreas of a RIP-Tag transgenic mouse expressing the oncogenic SV40 large T antigen (Tag) under the transcriptional control of the insulin promoter, obtained with a 40 MHz probe. Multiple round hypoechoic pancreatic lesions (annotations) can be seen, consistent with pancreatic cancer (β-islet tumors) (GIF 47 kb)

Supplementary Video S2. Ultrasound imaging of the right kidney in a diabetic murine model. The kidney cortex is markedly hyperechoic if compared to hepatic parenchyma (mov 4721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppola, A., Zorzetto, G., Piacentino, F. et al. Imaging in experimental models of diabetes. Acta Diabetol 59, 147–161 (2022). https://doi.org/10.1007/s00592-021-01826-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-021-01826-3

Keywords

Navigation