Skip to main content

Advertisement

Log in

Fetal sex influences maternal fasting plasma glucose levels and basal β-cell function in pregnant women with normal glucose tolerance

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Fetal sex has recently emerged as a new factor that is related to maternal glucose homeostasis during pregnancy. The present study aimed to investigate the effect of fetal sex on maternal glucose metabolism in women with normal glucose tolerance (NGT) during pregnancy in the Chinese population.

Methods

A total of 877 pregnant women with NGT were recruited at 24–28 weeks of gestation and underwent a 75-g oral glucose tolerance test (OGTT). Pregnant women were divided into two groups according to fetal sex. Physical examinations and laboratory tests were performed. Pancreatic β-cell function and insulin sensitivity were evaluated using OGTT-derived indices.

Results

Compared with women bearing female fetuses, women who delivered male fetuses had higher fasting plasma glucose (FPG) concentrations [4.5 (4.2–4.8) vs. 4.4 (4.2–4.7) mmol/L, P < 0.05], but lower HOMA-β [161.9 (118.2–238.8) vs. 181.0 (131.7–260.9), P < 0.05] and Stumvoll first phase of insulin secretion [1230.2 (1077.9–1433.7) vs. 1290.9 (1134.0–1493.2), P < 0.05]. Multiple linear regression analysis indicated that the sex of the fetus was independently associated with maternal FPG and HOMA-β. Further binary logistic regression analyses revealed that the presence of a male fetus was significantly associated with elevated FPG [odds ratio (OR) 1.50; 95% confidence interval (CI) 1.12–2.00; P = 0.006] and lower HOMA-β (OR 0.70; 95% CI 0.52-0.94; P = 0.018) even after adjustment for potential confounders.

Conclusions

This study provided evidence that maternal glucose metabolism could be affected by fetal sex even in NGT pregnant women. Our results suggest that the presence of male fetuses was independently associated with maternal elevated FPG and lower basal β-cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Coustan DR (2013) Gestational diabetes mellitus. Clin Chem 59(9):1310–1321

    Article  CAS  PubMed  Google Scholar 

  2. Noctor E, Crowe C, Carmody LA et al (2015) ATLANTIC-DIP: prevalence of metabolic syndrome and insulin resistance in women with previous gestational diabetes mellitus by international association of diabetes in pregnancy study groups criteria. Acta Diabetol 52(1):153–160

    Article  CAS  PubMed  Google Scholar 

  3. Kohler M, Ziegler AG, Beyerlein A (2016) Development of a simple tool to predict the risk of postpartum diabetes in women with gestational diabetes mellitus. Acta Diabetol 53(3):433–437

    Article  CAS  PubMed  Google Scholar 

  4. Zhao C, Wang F, Wang P et al (2015) Early second-trimester plasma protein profiling using multiplexed isobaric tandem mass tag (TMT) labeling predicts gestational diabetes mellitus. Acta Diabetol 52(6):1103–1112

    Article  CAS  PubMed  Google Scholar 

  5. Wagner R, Fritsche L, Heni M et al (2016) A novel insulin sensitivity index particularly suitable to measure insulin sensitivity during gestation. Acta Diabetol 53(6):1037–1044

    Article  CAS  PubMed  Google Scholar 

  6. Wangler MF, Chang AS, Moley KH et al (2005) Factors associated with preterm delivery in mothers of children with Beckwith–Wiedemann syndrome: a case cohort study from the BWS registry. Am J Med Genet A 134A(2):187–191

    Article  PubMed  Google Scholar 

  7. Krishnaveni GV, Veena SR, Hill JC et al (2010) Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care 33(2):402–404

    Article  CAS  PubMed  Google Scholar 

  8. Catalano PM, Presley L, Minium J et al (2009) Fetuses of obese mothers develop insulin resistance in utero. Diabetes Care 32(6):1076–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walsh JM, Segurado R, Mahony RM et al (2015) The effects of fetal gender on maternal and fetal insulin resistance. PLoS ONE 10(9):e0137215

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hocher B, Chen YP, Schlemm L et al (2009) Fetal sex determines the impact of maternal PROGINS progesterone receptor polymorphism on maternal physiology during pregnancy. Pharmacogenet Genomics 19(9):710–718

    Article  CAS  PubMed  Google Scholar 

  11. Al Mamun A, O’Callaghan MJ, Williams GM et al (2015) Breastfeeding is protective to diabetes risk in young adults: a longitudinal study. Acta Diabetol 52(5):837–844

    Article  PubMed  Google Scholar 

  12. Sheiner E (2007) The relationship between fetal gender and pregnancy outcome. Arch Gynecol Obstet 275(5):317–319

    Article  PubMed  Google Scholar 

  13. Aibar L, Puertas A, Valverde M et al (2012) Fetal sex and perinatal outcomes. J Perinat Med 40(3):271–276

    Article  PubMed  Google Scholar 

  14. Khalil MM, Alzahra E (2013) Fetal gender and pregnancy outcomes in Libya: a retrospective study. Libyan J Med 8:20008

    Article  Google Scholar 

  15. Jaskolka D, Retnakaran R, Zinman B et al (2015) Sex of the baby and risk of gestational diabetes mellitus in the mother: a systematic review and meta-analysis. Diabetologia 58(11):2469–2475

    Article  PubMed  Google Scholar 

  16. Ehrlich SF, Eskenazi B, Hedderson MM et al (2012) Sex ratio variations among the offspring of women with diabetes in pregnancy. Diabet Med 29(9):e273–e278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Retnakaran R, Kramer CK, Ye C et al (2015) Fetal sex and maternal risk of gestational diabetes mellitus: the impact of having a boy. Diabetes Care 38(5):844–851

    Article  CAS  PubMed  Google Scholar 

  18. International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger BE et al (2010) International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care 33(3):676–682

    Article  PubMed Central  Google Scholar 

  19. Group HSCR, Metzger BE, Lowe LP et al (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358(19):1991–2002

    Article  Google Scholar 

  20. Sesmilo G, Meler E, Perea V et al (2017) Maternal fasting glycemia and adverse pregnancy outcomes in a Mediterranean population. Acta Diabetol 54(3):293–299

    Article  CAS  PubMed  Google Scholar 

  21. Lim WY, Kwek K, Chong YS et al (2014) Maternal adiposity and blood pressure in pregnancy: varying relations by ethnicity and gestational diabetes. J Hypertens 32(4):857–864

    Article  CAS  PubMed  Google Scholar 

  22. Khoo CM, Sairazi S, Taslim S et al (2011) Ethnicity modifies the relationships of insulin resistance, inflammation, and adiponectin with obesity in a multiethnic Asian population. Diabetes Care 34(5):1120–1126

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xiao L, Zhao JP, Nuyt AM et al (2014) Female fetus is associated with greater maternal insulin resistance in pregnancy. Diabet Med 31(12):1696–1701

    Article  CAS  PubMed  Google Scholar 

  24. Matthews DR, Hosker JP, Rudenski AS et al (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419

    Article  CAS  PubMed  Google Scholar 

  25. Stumvoll M, Van Haeften T, Fritsche A et al (2001) Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care 24(4):796–797

    Article  CAS  PubMed  Google Scholar 

  26. Seltzer HS, Allen EW, Herron AL Jr et al (1967) Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest 46(3):323–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cohen O, Epstein GS, Weisz B et al (2006) Longitudinal assessment of insulin sensitivity in pregnancy. Validation of the homeostasis model assessment. Clin Endocrinol (Oxf) 64(6):640–644

    Article  CAS  Google Scholar 

  28. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470

    Article  CAS  PubMed  Google Scholar 

  29. Jensen CC, Cnop M, Hull RL et al (2002) Beta-cell function is a major contributor to oral glucose tolerance in high-risk relatives of four ethnic groups in the U.S. Diabetes 51(7):2170–2178

    Article  CAS  PubMed  Google Scholar 

  30. Moosazadeh M, Asemi Z, Lankarani KB et al (2016) Family history of diabetes and the risk of gestational diabetes mellitus in Iran: a systematic review and meta-analysis. Diabetes Metab Syndr. doi:10.1016/j.dsx.2016.12.016

    PubMed  Google Scholar 

  31. Zhu WW, Yang HX, Wang C et al (2017) High prevalence of gestational diabetes mellitus in Beijing: effect of maternal birth weight and other risk factors. Chin Med J (Engl) 130(9):1019–1025

    Article  Google Scholar 

  32. Yang SJ, Kim TN, Baik SH et al (2013) Insulin secretion and insulin resistance in Korean women with gestational diabetes mellitus and impaired glucose tolerance. Korean J Intern Med 28(3):306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mamabolo RL, Alberts M, Levitt NS et al (2007) Prevalence of gestational diabetes mellitus and the effect of weight on measures of insulin secretion and insulin resistance in third-trimester pregnant rural women residing in the central region of Limpopo province, South Africa. Diabet Med 24(3):233–239

    Article  CAS  PubMed  Google Scholar 

  34. Cersosimo E, Solis-Herrera C, Trautmann ME et al (2014) Assessment of pancreatic beta-cell function: review of methods and clinical applications. Curr Diabetes Rev 10(1):2–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wallace TM, Levy JC, Matthews DR (2004) Use and abuse of HOMA modeling. Diabetes Care 27(6):1487–1495

    Article  PubMed  Google Scholar 

  36. Morkrid K, Jenum AK, Sletner L et al (2012) Failure to increase insulin secretory capacity during pregnancy-induced insulin resistance is associated with ethnicity and gestational diabetes. Eur J Endocrinol 167(4):579–588

    Article  PubMed  Google Scholar 

  37. Wang X, Li W, Ma L et al (2017) Investigation of miRNA-binding site variants and risk of gestational diabetes mellitus in Chinese pregnant women. Acta Diabetol 54(3):309–316

    Article  CAS  PubMed  Google Scholar 

  38. Huang Y, Fang C, Ma Z et al (2016) Betatrophin levels were increased in pregnant women with or without gestational diabetes mellitus and associated with beta cell function. Rev Bras Ginecol Obstet 38(6):287–292

    Article  PubMed  Google Scholar 

  39. Moller N, Jorgensen JO (2009) Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev 30(2):152–177

    Article  PubMed  Google Scholar 

  40. Huang C, Snider F, Cross JC (2009) Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology 150(4):1618–1626

    Article  CAS  PubMed  Google Scholar 

  41. Nielsen JH, Galsgaard ED, Moldrup A et al (2001) Regulation of beta-cell mass by hormones and growth factors. Diabetes 50(Suppl 1):S25–S29

    Article  CAS  PubMed  Google Scholar 

  42. dos Santos Silva CM, Barbosa FR, Lima GA et al (2011) BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity (Silver Spring) 19(4):800–805

    Article  Google Scholar 

  43. Scheinman EJ, Damouni R, Caspi A et al (2015) The beneficial effect of growth hormone treatment on islet mass in streptozotocin-treated mice. Diabetes Metab Res Rev 31(5):492–499

    Article  CAS  PubMed  Google Scholar 

  44. Gonzalez FA, Hobel CJ, Buster JE (1987) Fetal gender effects on maternal serum prolactin levels. J Reprod Med 32(1):21–24

    CAS  PubMed  Google Scholar 

  45. Chellakooty M, Skibsted L, Skouby SO et al (2002) Longitudinal study of serum placental GH in 455 normal pregnancies: correlation to gestational age, fetal gender, and weight. J Clin Endocrinol Metab 87(6):2734–2739

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank The Metabolic Diseases Biobank of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital for collecting data and offering help.

Funding

The work was financially supported by funding from National Key R&D Program of China (Grant No. 2017YFC0906903), National Natural Science Foundation of China (Grant No. 81570808), Program of Shanghai Subject Chief Scientist (Grant No. 2017BR045), the Innovation Foundation of Translational Medicine of Shanghai Jiao Tong University School of Medicine–Project of Precision Medicine (Grant No. 15ZH4006) and National Human Genetic Resources Sharing Service Platform (Grant No. YCZYPT[2017]02).

Author information

Authors and Affiliations

Authors

Contributions

MT, CW and WJ contributed to the planning of the study. XG, LG and YZ wrote the manuscript, analyzed and interpreted data. HL, YS, RC and PF performed the research. All authors reviewed the manuscript and approved the final draft.

Corresponding authors

Correspondence to Minfang Tao or Congrong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study was approved by the institutional review board of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital.

Human and animal rights

All procedures were in accordance with the principles of the Declaration of Helsinki of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients included in the study.

Additional information

Managed by Antonio Secchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, X., Geng, L., Zhang, Y. et al. Fetal sex influences maternal fasting plasma glucose levels and basal β-cell function in pregnant women with normal glucose tolerance. Acta Diabetol 54, 1131–1138 (2017). https://doi.org/10.1007/s00592-017-1055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-017-1055-1

Keywords

Navigation