Skip to main content

Advertisement

Log in

Alpha- and beta-cell abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

New recommendations for the use of glycated haemoglobin A1c (HbA1c) to diagnose prediabetes and type 2 diabetes have changed the constitution of the two populations. We aimed to investigate the pathophysiological characteristics of individuals with HbA1c-defined prediabetes and type 2 diabetes, respectively. Ten subjects with HbA1c-defined prediabetes, i.e. HbA1c from 5.7 to 6.4 % (39–46 mmol/mol), eight newly diagnosed patients with HbA1c-defined type 2 diabetes [HbA1c ≥6.5 % (≥48 mmol/mol)], and ten controls with HbA1c lower than 5.7 % (<39 mmol/mol), were studied. Blood was sampled over 4 h on two separate days after a 75 g-oral glucose tolerance test and an isoglycaemic intravenous glucose infusion, respectively. Blood was analysed for glucose, insulin, C-peptide, glucagon, and incretin hormones. Insulinogenic index, disposition index, glucagon suppression, and incretin effect were evaluated. Subjects with HbA1c-defined prediabetes showed significantly lower insulinogenic index (P = 0.02), disposition index (P = 0.001), and glucagon suppression compared with controls; and similar (P = NS) insulinogenic index and glucagon suppression and higher disposition index (P = 0.02) compared to HbA1c-diagnosed type 2 diabetic patients. The patients with type 2 diabetes showed lower insulinogenic index (P = 0.0003), disposition index (P < 0.0001), and glucagon suppression compared with the controls. The incretin effect was significantly (P < 0.05) reduced in patients with HbA1c-defined type 2 diabetes compared to subjects with HbA1c-defined prediabetes and controls. Plasma levels of incretin hormones were similar across the three groups. HbA1c associated negatively with insulinogenic index, disposition index, and incretin effect. Our findings show clear alpha- and beta-cell dysfunction in HbA1c-defined type 2 diabetes compatible with the previously described pathophysiology of plasma glucose-defined type 2 diabetes. Furthermore, in HbA1c-defined prediabetes, we show defective insulin response in combination with inappropriate suppression of glucagon, which may constitute new targets for pharmacological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Diabetes Association (2013) Diagnosis and classification of diabetes mellitus. Diabetes Care 36(Suppl 1):S67–S74. doi:10.2337/dc13-S067

    Article  PubMed Central  Google Scholar 

  2. Centers for Disease Control and Prevention (2011) National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  3. Centers for Disease Control and Prevention (2008) National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2007. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  4. Edelman D, Olsen MK, Dudley TK et al (2004) Utility of hemoglobin A1c in predicting diabetes risk. J Gen Intern Med 19:1175–1180. doi:10.1111/j.1525-1497.2004.40178.x

    Article  PubMed Central  PubMed  Google Scholar 

  5. Muscelli E, Mari A, Casolaro A et al (2008) Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes 57:1340–1348. doi:10.2337/db07-1315

    Article  CAS  PubMed  Google Scholar 

  6. Faerch K, Vaag A, Holst JJ et al (2008) Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia 51:853–861. doi:10.1007/s00125-008-0951-x

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Tang X, Cao H et al (2012) Impaired secretion of total glucagon-like peptide-1 in people with impaired fasting glucose combined impaired glucose tolerance. Int J Med Sci 9:574–581. doi:10.7150/ijms.4128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19. doi:10.1007/s00125-002-1009-0

    Article  CAS  PubMed  Google Scholar 

  9. D’Alessio D (2011) The role of dysregulated glucagon secretion in type 2 diabetes. Diabetes Obes Metab 13(Suppl 1):126–132. doi:10.1111/j.1463-1326.2011.01449.x

    Article  PubMed  Google Scholar 

  10. Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucagon-like peptide-1 in patients with type 2 diabetes mellitus: systematic review and meta-analyses of clinical studies. Diabetologia. doi:10.1007/s00125-013-2841-0

    PubMed Central  PubMed  Google Scholar 

  11. Calanna S, Christensen M, Holst JJ et al (2013) Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care 36:3346–3352. doi:10.2337/dc13-0465

    Article  CAS  PubMed  Google Scholar 

  12. Nauck MA, Homberger E, Siegel EG et al (1986) Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63:492–498

    Article  CAS  PubMed  Google Scholar 

  13. Muscelli E, Mari A, Natali A et al (2006) Impact of incretin hormones on beta-cell function in subjects with normal or impaired glucose tolerance. Am J Physiol Endocrinol Metab 291:E1144–E1150. doi:10.1152/ajpendo.00571.2005

    Article  CAS  PubMed  Google Scholar 

  14. Knowler WC, Barrett-Connor E, Fowler SE et al (2002) Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 346:393–403. doi:10.1056/NEJMoa012512

    Article  CAS  PubMed  Google Scholar 

  15. Tuomilehto J, Lindström J, Eriksson JG et al (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344:1343–1350. doi:10.1056/NEJM200105033441801

    Article  CAS  PubMed  Google Scholar 

  16. Gaede P, Vedel P, Larsen N et al (2003) Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 348:383–393. doi:10.1056/NEJMoa021778

    Article  PubMed  Google Scholar 

  17. Mosca A, Goodall I, Hoshino T et al (2007) Global standardization of glycated hemoglobin measurement: the position of the IFCC Working Group. Clin Chem Lab Med 45:1077–1080. doi:10.1515/CCLM.2007.246

    CAS  PubMed  Google Scholar 

  18. Calanna S, Piro S, Di Pino A et al (2013) Beta and alpha cell function in metabolically healthy but obese subjects: relationship with entero-insular axis. Obesity (Silver Spring) 21:320–325. doi:10.1002/oby.20017

    Article  CAS  Google Scholar 

  19. Calanna S, Urbano F, Piro S et al (2012) Elevated plasma glucose-dependent insulinotropic polypeptide associates with hyperinsulinemia in metabolic syndrome. Eur J Endocrinol 166:917–922. doi:10.1530/EJE-11-0765

    Article  CAS  PubMed  Google Scholar 

  20. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

    Article  CAS  PubMed  Google Scholar 

  21. Kjems LL, Holst JJ, Vølund A, Madsbad S (2003) The influence of GLP-1 on glucose-stimulated insulin secretion: effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes 52:380–386

    Article  CAS  PubMed  Google Scholar 

  22. Tura A, Kautzky-Willer A, Pacini G (2006) Insulinogenic indices from insulin and C-peptide: comparison of beta-cell function from OGTT and IVGTT. Diabetes Res Clin Pract 72:298–301. doi:10.1016/j.diabres.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  23. Bergman RN, Finegood DT, Kahn SE (2002) The evolution of beta-cell dysfunction and insulin resistance in type 2 diabetes. Eur J Clin Invest 32(Suppl 3):35–45

    Article  CAS  PubMed  Google Scholar 

  24. Ahrén B, Larsson H (2001) Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 44:1998–2003. doi:10.1007/s001250100003

    Article  PubMed  Google Scholar 

  25. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52

    Article  CAS  PubMed  Google Scholar 

  26. Morris DH, Khunti K, Achana F et al (2013) Progression rates from HbA1c 6.0-6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia 56:1489–1493. doi:10.1007/s00125-013-2902-4

    Article  CAS  PubMed  Google Scholar 

  27. Gillett MJ (2009) International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes: Diabetes Care 2009, 32(7), pp. 1327–1334. Clin Biochem Rev 30:197–200

    PubMed Central  PubMed  Google Scholar 

  28. Wolffenbuttel BHR, Herman WH, Gross JL et al (2013) Ethnic differences in glycemic markers in patients with type 2 diabetes. Diabetes Care. doi:10.2337/dc12-2711

    PubMed  Google Scholar 

  29. Jansen H, Stolk RP, Nolte IM et al (2013) Determinants of HbA1c in nondiabetic Dutch adults: genetic loci and clinical and lifestyle parameters, and their interactions in the lifelines cohort study. J Intern Med 273:283–293. doi:10.1111/joim.12010

    Article  CAS  PubMed  Google Scholar 

  30. Shah P, Vella A, Basu A et al (2000) Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab 85:4053–4059

    CAS  PubMed  Google Scholar 

  31. Knop FK, Vilsbøll T, Madsbad S et al (2007) Inappropriate suppression of glucagon during OGTT but not during isoglycaemic i.v. glucose infusion contributes to the reduced incretin effect in type 2 diabetes mellitus. Diabetologia 50:797–805. doi:10.1007/s00125-006-0566-z

    Article  CAS  PubMed  Google Scholar 

  32. Knop FK, Vilsbøll T, Højberg PV et al (2007) Reduced incretin effect in type 2 diabetes: cause or consequence of the diabetic state? Diabetes 56:1951–1959. doi:10.2337/db07-0100

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.C. contributed to study design, researched data, contributed to discussion, and wrote the manuscript. R.S. researched data, contributed to discussion, and reviewed and edited the manuscript. A.D.P. contributed to study design, researched data, contributed to discussion, and reviewed and edited the manuscript. F.K.K., S.P. and A.M.R. contributed to study design and discussion, and reviewed and edited the manuscript. F.P. designed the study, researched data, contributed to discussion, and reviewed and edited the manuscript. F.P. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors approved the final version. This study was supported by the Department of Clinical and Molecular Biomedicine, University of Catania. S.C. is a Novo Nordisk employee now in the Pharmaceutical Medicine Programme.

Conflict of interest

Salvatore Calanna, Roberto Scicali, Antonino Di Pino, Filip Krag Knop, Salvatore Piro, Agata Maria Rabuazzo and Francesco Purrello declare they have no conflict of interest.

Human and Animal Rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Purrello.

Additional information

Communicated by Antonio Secchi.

Salvatore Calanna and Roberto Scicali have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calanna, S., Scicali, R., Di Pino, A. et al. Alpha- and beta-cell abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes. Acta Diabetol 51, 567–575 (2014). https://doi.org/10.1007/s00592-014-0555-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0555-5

Keywords

Navigation