Skip to main content
Log in

Miglitol administered before breakfast increased plasma active glucagon-like peptide-1 (GLP-1) levels after lunch in patients with type 2 diabetes treated with sitagliptin

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

An Erratum to this article was published on 01 November 2011

Abstract

We recently reported that the administration of miglitol alone just before breakfast improved postprandial hyperglycemia and increased active glucagon-like peptide-1 (GLP-1) levels after lunch in men without diabetes. Miglitol and dipeptidyl peptidase-4 inhibitors, such as sitagliptin, enhance plasma active GLP-1 concentrations via different mechanisms; therefore, combined therapy with these agents was more effective than monotherapy. In this study, we compared the effectiveness of the administration of miglitol alone just before breakfast on the plasma glucose, serum insulin and glucagon, and plasma incretin levels in sitagliptin-treated patients with type 2 diabetes. We measured the plasma glucose, serum insulin and glucagon, plasma active GLP-1, and total glucose-dependent insulinotropic polypeptide levels before breakfast, at 120 min after breakfast, before lunch, and 60 and 120 min after lunch in patients with diabetes who are receiving sitagliptin. This trial was performed for the following 2 days on each subject (Day 1: no miglitol, Day 2: miglitol alone [50 mg] administered just before breakfast). The area under the curve (AUC) of the plasma glucose levels after lunch in the miglitol-treated group tended to be lower than that in the miglitol-untreated group, but the difference was not statistically significant. Miglitol alone administered at breakfast increased the AUC of the active plasma GLP-1 levels after lunch in sitagliptin-treated patients with diabetes. Our results suggest that the once-daily administration of miglitol as a “GLP-1 enhancer” in combination with sitagliptin was effective for the treatment for patients with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Macfarlane DP, Paterson KR, Fisher M (2007) Oral anti diabetic agents as cardiovascular drugs. Diabetes Obes Metab 9:23–30

    Article  PubMed  CAS  Google Scholar 

  2. Ho PM, Rumsfeld JS, Masoudi FA, McClure DL, Plomondon ME, Steiner JF, Magid DJ (2006) Effect of medication nonadherence on hospitalization and mortality among patients with diabetes mellitus. Arch Intern Med 166:1836–1841

    Article  PubMed  Google Scholar 

  3. Hertz RP, Unger AN, Lustik MB (2005) Adherence with pharmacotherapy for type 2 diabetes: a retrospective cohort study of adults with employer-sponsored health insurance. Clin Ther 27:1064–1073

    Article  PubMed  Google Scholar 

  4. Nemoto M, Tajima N, Kawamori R (2011) Efficacy of combined use of miglitol in type 2 diabetes patients receiving insulin therapy-placebo-controlled double-blind comparative study. Acta Diabetol 48:15–20

    Article  PubMed  CAS  Google Scholar 

  5. Hsieh SH, Shih KC, Chou CW, Chu CH (2011) Evaluation of the efficacy and tolerability of miglitol in Chinese patients with type 2 diabetes mellitus inadequately controlled by diet and sulfonylureas. Acta Diabetol 48:71–77

    Article  PubMed  CAS  Google Scholar 

  6. Nathan DM, Buse JB, Davidson MB (2006) Management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 29:1963–1972

    Article  PubMed  Google Scholar 

  7. Aoki K, Kato H, Terauchi Y (2007) Divided-dose administration of miglitol just before and 15 min after the start of a meal smoothes postprandial plasma glucose excursions and serum insulin responses in healthy men. Endocr J 54:1009–1014

    Article  PubMed  CAS  Google Scholar 

  8. Aoki K, Nakamura A, Ito S, Nezu U, Iwasaki T, Takahasi M, Kimura M, Terauchi Y (2007) Administration of miglitol until 30 min after the start of a meal is effective in type 2 diabetic patients. Diabetes Res Clin Pract 78:30–33

    Article  PubMed  CAS  Google Scholar 

  9. Aoki K, Nakajima S, Nezu U, Shinoda K, Terauchi Y (2008) Comparison of pre- versus postmeal administration of miglitol for 3 months in type 2 diabetic patients. Diabetes Obes Metab 10:970–972

    Article  PubMed  CAS  Google Scholar 

  10. Aoki K, Muraoka T, Ito Y, Togashi Y, Terauchi Y (2010) Comparison of adverse gastrointestinal effects of acarbose and miglitol in healthy men: a crossover study. Intern Med 49:1085–1087

    Article  PubMed  Google Scholar 

  11. Narita T, Katsuura Y, Sato T, Hosoba M, Fujita H, Morii T, Yamada Y (2009) Miglitol induces prolonged and enhanced glucagon-like peptide-1 and reduced gastric inhibitory polypeptide responses after ingestion of a mixed meal in Japanese type 2 diabetic patients. Diabet Med 26:187–188

    Article  PubMed  CAS  Google Scholar 

  12. Arakawa M, Ebato C, Mita T, Fujitani Y, Shimizu T, Watada H, Kawamori R, Hirose T (2008) Miglitol suppresses the postprandial increase in interleukin 6 and enhances active glucagon-like peptide 1 secretion in viscerally obese subjects. Metabolism 57:1299–1306

    Article  PubMed  CAS  Google Scholar 

  13. Lee A, Patrick P, Wishart J, Horowitz M, Morley JE (2002) The effects of miglitol on glucagon-like peptide-1 secretion and appetite sensations in obese type 2 diabetics. Diabetes Obes Metab 4:329–335

    Article  PubMed  CAS  Google Scholar 

  14. Aoki K, Miyazaki T, Nagakura J, Orime K, Togashi Y, Terauchi Y (2010) Effects of pre-meal versus post-meal administration of miglitol on plasma glucagon-like peptide-1 and glucose dependent insulinotropic polypeptide levels in healthy men. Endocr J 57:673–677

    Article  PubMed  CAS  Google Scholar 

  15. Fadini GP, de Kreutzenberg SV, Gjini R, Avogaro A (2011) The metabolic syndrome influences the response to incretin-based therapies. Acta Diabetol [Epub ahead of print]

  16. Herman GA, Bergman A, Stevens C, Kotey P, Yi B, Zhao P et al (2006) Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 91:4612–4619

    Article  PubMed  CAS  Google Scholar 

  17. Aoki K, Masuda K, Miyazaki T, Togashi Y, Terauchi Y (2010) Effects of miglitol, sitagliptin or their combination on plasma glucose, insulin and incretin levels in non-diabetic men. Endocr J 57:667–672

    Article  PubMed  CAS  Google Scholar 

  18. Masuda K, Aoki K, Terauchi Y (2011) Effects of miglitol taken just before or after breakfast on plasma glucose, serum insulin, glucagon and incretin levels after lunch in men with normal glucose tolerance (NGT), impaired fasting glucose (IFG) or impaired glucose tolerance (IGT). J Diabetes Invest, (in press) doi:10.1111/j.2040-1124.2011.00129.x

  19. The Committee of Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus (2010) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Invest 1:212–228

    Article  Google Scholar 

  20. Moritoh Y, Takeuchi K, Hazama M (2010) Combination treatment with alogliptin and voglibose increases active GLP-1 circulation, prevents the development of diabetes and preserves pancreatic beta- cells in prediabetic db/db mice. Diabetes Obes Metab 12:224–233

    Article  PubMed  CAS  Google Scholar 

  21. Migoya EM, Bergeron R, Miller JL, Snyder RN, Tanen M, Hilliard D et al (2010) Dipeptidyl peptidase-4 inhibitors administered in combination with metformin result in an additive increase in the plasma concentration of active GLP-1. Clin Pharmacol Ther 88:801–808

    Article  PubMed  CAS  Google Scholar 

  22. Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K et al (2007) Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 117:246–257

    Article  PubMed  CAS  Google Scholar 

  23. Kadowaki T, Miyake Y, Hagura R, Akanuma Y, Kajinuma H, Kuzuya N, Takaku F, Kosaka K (1984) Risk factors for worsening to diabetes in subjects with impaired glucose tolerance. Diabetologia 26:44–49

    Article  PubMed  CAS  Google Scholar 

  24. Farilla L, Bulotta A, Hirshberg B, Li Calzi S, Khoury N, Noushmehr H, Bertolotto C, Di Mario U, Harlan DM, Perfetti R (2003) Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology 144:5149–5158

    Article  PubMed  CAS  Google Scholar 

  25. Astrup A, Rössner S, Van Gaal L, Rissanen A, Niskanen L, Al Hakim M, Madsen J, Rasmussen MF, Lean ME, NN8022-1807 Study Group (2009) Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374:1606–1616

    Article  PubMed  CAS  Google Scholar 

  26. Rosenstock J, Klaff LJ, Schwartz S, Northrup J, Holcombe JH, Wilhelm K, Trautmann M (2010) Effects of exenatide and lifestyle modification on body weight and glucose tolerance in obese subjects with and without pre-diabetes. Diabetes Care 33:1173–1175

    Article  PubMed  CAS  Google Scholar 

  27. Uttenthal LO, Ukponmwan OO, Wood SM, Ghiglione M, Ghatei MA, Trayner IM, Bloom SR (1986) Long-term effects of intestinal alpha-glucosidase inhibition on postprandial glucose, pancreatic and gut hormone responses and fasting serum lipids in diabetics on sulphonylureas. Diabet Med 3:155–160

    Article  PubMed  CAS  Google Scholar 

  28. Seifarth C, Bergmann J, Holst JJ, Ritzel R, Schmiegel W, Nauck MA (1998) Prolonged and enhanced secretion of glucagon-like peptide 1 (7–36 amide) after oral sucrose due to alpha-glucosidase inhibition (acarbose) in type 2 diabetic patients. Diabet Med 15:485–491

    Article  PubMed  CAS  Google Scholar 

  29. Hücking K, Kostic Z, Pox C, Ritzel R, Holst JJ, Schmiegel W, Nauck MA (2005) Alpha-Glucosidase inhibition (acarbose) fails to enhance secretion of glucagon-like peptide 1 (7–36 amide) and to delay gastric emptying in type 2 diabetic patients. Diabet Med 22:470–476

    Article  PubMed  Google Scholar 

  30. Seino Y, Fukushima M, Yabe D (2010) GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Invest 1:8–23

    Article  CAS  Google Scholar 

  31. Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H et al (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8:738–742

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank E. Kayama, H. Ozawa, A. Katabami, Y. Hirayama, T. Matsunaga, M. Abe, T. Sugita, M. Kyuno, N. Hayasaka, E. Kurokawa, S. Suzuki, M. Ogushi, K. Nagata, and R. Hama and R. Shimosaka for collecting the blood samples. We also thank the Division of Clinical Laboratory for preserving the blood samples and the Division of Nourishment for providing the same energy-limited food. This work was supported in part by Grants-in-Aid for Scientific Research (B) 19390251 and (B) 21390282 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and a Medical Award from the Japan Medical Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuo Terauchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, K., Kamiyama, H., Yoshimura, K. et al. Miglitol administered before breakfast increased plasma active glucagon-like peptide-1 (GLP-1) levels after lunch in patients with type 2 diabetes treated with sitagliptin. Acta Diabetol 49, 225–230 (2012). https://doi.org/10.1007/s00592-011-0322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0322-9

Keywords

Navigation