Skip to main content

Advertisement

Log in

Enhanced syndecan-1 expression on neutrophils in patients with type 2 diabetes mellitus

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

The peripheral neutrophils are one of the main inflammatory cells and significantly influence the damage of endothelium. Type 2 diabetes is a manifestation of an ongoing low-grade inflammation. In diabetes, impairment of neutrophil adhesion to the endothelium and migration to the site of inflammation were detected, which associated closely with adhesion molecules expressed on neutrophils and endothelial cells. To detect the expression of syndecan-1 on neutrophils in patients with type 2 diabetes mellitus, we recruited 29 patients with type 2 diabetes mellitus without any diabetic complication and 24 healthy subjects (controls). Expression of syndecan-1 was determined by flow cytometry, and potential correlations between syndecan-1 and clinical characteristics were analyzed. On neutrophils, percentage of positive syndecan-1 cells was significantly higher in subjects with diabetes (10.363 ± 1.689%) than that of the controls (3.775 ± 0.634%, P = 0.001). An association between body mass index (BMI) and percentage of positive syndecan-1 neutrophils was detected (r = 0.415, P = 0.025). When BMI was categorized into subgroups of ≤25 kg/m2 (n = 10) and >25 kg/m2 (n = 19), the average percentages of positive syndecan-1 neutrophils in patients with diabetes were 5.733 ± 1.842% and 12.642 ± 2.251%, respectively (t = −2.137, P = 0.042). A multiple regression analysis showed that BMI (β = 0.783, P < 0.000) was a significant predictor of positive syndecan-1 neutrophils in subjects with type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alba-Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P (2007) Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res 40:1037–1044

    Article  PubMed  CAS  Google Scholar 

  2. Galkina E, Ley K (2006) Leukocyte recruitment and vascular injury in diabetic nephropathy. J Am Soc Nephrol 17:368–377

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi T, Hato F, Yamane T, Inaba M, Okuno Y, Nishizawa Y, Kitagawa S (2000) Increased spontaneous adherence of neutrophils from type 2 diabetic patients with overt proteinuria: possible role of the progression of diabetic nephropathy. Diabetes Care 23:417–418

    Article  PubMed  CAS  Google Scholar 

  4. Fardon NJ, Wilkinson R, Thomas TH (2002) Abnormalities in primary granule exocytosis in neutrophils from Type I diabetic patients with nephropathy. Clin Sci (Lond) 102:69–75

    Article  CAS  Google Scholar 

  5. Wang JB, Guan J, Shen J, Zhou L, Zhang YJ, Si YF, Yang L, Jian XH, Sheng Y (2009) Insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 86:83–88

    Article  PubMed  CAS  Google Scholar 

  6. Meigs JB, Hu FB, Rifai N, Manson JE (2004) Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA 291:1978–1986

    Article  PubMed  CAS  Google Scholar 

  7. Kansas GS (1996) Selectins and their ligands: current concepts and controversies. Blood 88:3259–3287

    PubMed  CAS  Google Scholar 

  8. Omi H, Okayama N, Shimizu M, Okouchi M, Ito S, Fukutomi T, Itoh M (2002) Participation of high glucose concentrations in neutrophil adhesion and surface expression of adhesion molecules on cultured human endothelial cells: effect of antidiabetic medicines. J Diabetes Complications 16:201–208

    Article  PubMed  Google Scholar 

  9. Barouch FC, Miyamoto K, Allport JR, Fujita K, Bursell SE, Aiello LP, Luscinskas FW, Adamis AP (2000) Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Invest Ophthalmol Vis Sci 41:1153–1158

    PubMed  CAS  Google Scholar 

  10. Mastej K, Adamiec R (2008) Neutrophil surface expression of CD11b and CD62L in diabetic microangiopathy. Acta Diabetol 45:183–190

    Article  PubMed  CAS  Google Scholar 

  11. van Oostrom AJ, van Wijk JP, Sijmonsma TP, Rabelink TJ, Castro Cabezas M (2004) Increased expression of activation markers on monocytes and neutrophils in type 2 diabetes. Neth J Med 62:320–325

    PubMed  Google Scholar 

  12. Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B (1997) Impaired leucocyte functions in diabetic patients. Diabet Med 14:29–34

    Article  PubMed  CAS  Google Scholar 

  13. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68:729–777

    Article  PubMed  CAS  Google Scholar 

  14. Park PW, Reizes O, Bernfield M (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 275:29923–29926

    Article  PubMed  CAS  Google Scholar 

  15. Wang JB, Zhang YJ, Zhang Y, Guan J, Chen LY, Fu CH, Du HJ, Sheng Y, Zhou L, Si YF, Zhang Y (2010) Negative correlation between serum syndecan-1 and apolipoprotein A1 in patients with type 2 diabetes mellitus. Acta Diabetol [Epub ahead of print]

  16. Cortes V, Amigo L, Donoso K, Valencia I, Quinones V, Zanlungo S, Brandan E, Rigotti A (2007) Adenovirus-mediated hepatic syndecan-1 overexpression induces hepatocyte proliferation and hyperlipidaemia in mice. Liver Int 27:569–581

    Article  PubMed  CAS  Google Scholar 

  17. Ninomiya JK, L’Italien G, Criqui MH, Whyte JL, Gamst A, Chen RS (2004) Association of the metabolic syndrome with history of myocardial infarction and stroke in the Third National Health and Nutrition Examination Survey. Circulation 109:42–46

    Article  PubMed  Google Scholar 

  18. Venaille TJ, Misso NL, Phillips MJ, Robinson BW, Thompson PJ (1994) Effects of different density gradient separation techniques on neutrophil function. Scand J Clin Lab Invest 54:385–391

    Article  PubMed  CAS  Google Scholar 

  19. Luscinskas FW, Lawler J (1994) Integrins as dynamic regulators of vascular function. Faseb J 8:929–938

    PubMed  CAS  Google Scholar 

  20. van der Voort R, Keehnen RM, Beuling EA, Spaargaren M, Pals ST (2000) Regulation of cytokine signaling by B cell antigen receptor and CD40-controlled expression of heparan sulfate proteoglycans. J Exp Med 192:1115–1124

    Article  PubMed  Google Scholar 

  21. Gotte M, Joussen AM, Klein C, Andre P, Wagner DD, Hinkes MT, Kirchhof B, Adamis AP, Bernfield M (2002) Role of syndecan-1 in leukocyte-endothelial interactions in the ocular vasculature. Invest Ophthalmol Vis Sci 43:1135–1141

    PubMed  Google Scholar 

  22. Gotte M (2003) Syndecans in inflammation. Faseb J 17:575–591

    Article  PubMed  CAS  Google Scholar 

  23. Sanderson RD, Lalor P, Bernfield M (1989) B lymphocytes express and lose syndecan at specific stages of differentiation. Cell Regul 1:27–35

    PubMed  CAS  Google Scholar 

  24. Yeaman C, Rapraeger AC (1993) Post-transcriptional regulation of syndecan-1 expression by cAMP in peritoneal macrophages. J Cell Biol 122:941–950

    Article  PubMed  CAS  Google Scholar 

  25. Turner CA Jr, Mack DH, Davis MM (1994) Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77:297–306

    Article  PubMed  CAS  Google Scholar 

  26. Hodgkin PD, Lee JH, Lyons AB (1996) B cell differentiation and isotype switching is related to division cycle number. J Exp Med 184:277–281

    Article  PubMed  CAS  Google Scholar 

  27. Manakil JF, Sugerman PB, Li H, Seymour GJ, Bartold PM (2001) Cell-surface proteoglycan expression by lymphocytes from peripheral blood and gingiva in health and periodontal disease. J Dent Res 80:1704–1710

    Article  PubMed  CAS  Google Scholar 

  28. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646

    Article  PubMed  CAS  Google Scholar 

  29. Tkachenko E, Rhodes JM, Simons M (2005) Syndecans: new kids on the signaling block. Circ Res 96:488–500

    Article  PubMed  CAS  Google Scholar 

  30. Worapamorn W, Haase HR, Li H, Bartold PM (2001) Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. J Cell Physiol 186:448–456

    Article  PubMed  CAS  Google Scholar 

  31. Manakil JF, Seymour GJ, Bartold PM (2007) Effect of cytokine and antigen stimulation on peripheral blood lymphocyte syndecan-1 expression. Oral Microbiol Immunol 22:272–276

    Article  PubMed  CAS  Google Scholar 

  32. Halden Y, Rek A, Atzenhofer W, Szilak L, Wabnig A, Kungl AJ (2004) Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem J 377:533–538

    Article  PubMed  CAS  Google Scholar 

  33. Dobra K, Nurminen M, Hjerpe A (2003) Growth factors regulate the expression profile of their syndecan co-receptors and the differentiation of mesothelioma cells. Anticancer Res 23:2435–2444

    PubMed  CAS  Google Scholar 

  34. Gallo RL, Ono M, Povsic T, Page C, Eriksson E, Klagsbrun M, Bernfield M (1994) Syndecans cell surface heparan sulfate proteoglycans are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci USA 91:11035–11039

    Article  PubMed  CAS  Google Scholar 

  35. Cnop M, Welsh N, Jonas JC, Jorns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54:S97–S107

    Article  PubMed  CAS  Google Scholar 

  36. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  37. Mokha JS, Srinivasan SR, Dasmahapatra P, Fernandez C, Chen W, Xu J, Berenson GS (2010) Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: the Bogalusa heart study. BMC Pediatr 10:73

    PubMed  Google Scholar 

  38. Xu H, Song Y, You NC, Zhang ZF, Greenland S, Ford ES, He L, Liu S (2010) Prevalence and clustering of metabolic risk factors for type 2 diabetes among Chinese adults in Shanghai, China. BMC Public Health 10:683

    Article  PubMed  Google Scholar 

  39. Martos R, Valle M, Morales RM, Canete R, Gascon F, Urbano MM (2009) Changes in body mass index are associated with changes in inflammatory and endothelial dysfunction biomarkers in obese prepubertal children after 9 months of body mass index SD score loss. Metabolism 58:1153–1160

    Article  PubMed  CAS  Google Scholar 

  40. Bougoulia M, Triantos A, Koliakos G (2006) Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones (Athens) 5:192–199

    Google Scholar 

  41. Ziccardi P, Nappo F, Giugliano G, Esposito K, Marfella R, Cioffi M, D’Andrea F, Molinari AM, Giugliano D (2002) Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 105:804–809

    Article  PubMed  CAS  Google Scholar 

  42. Shah TJ, Leik CE, Walsh SW (2010) Neutrophil infiltration and systemic vascular inflammation in obese women. Reprod Sci 17:116–124

    Article  PubMed  CAS  Google Scholar 

  43. Elenius V, Gotte M, Reizes O, Elenius K, Bernfield M (2004) Inhibition by the soluble syndecan-1 ectodomains delays wound repair in mice overexpressing syndecan-1. J Biol Chem 279:41928–41935

    Article  PubMed  CAS  Google Scholar 

  44. Kim M, Carman CV, Springer TA (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–1725

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the following nurses for their help in collecting the peripheral venous blood samples: Li Yang, Shi-Shi Li, Jing Zhao, Ze Zhang, Dan-Dan Li, Chun-Mei Zhang, Ying-Qin Xie, Ya-Li Liu, Li-Hong Zhou, Li-Bo Yang, Shuang Guo.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Bo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JB., Zhang, YJ., Guan, J. et al. Enhanced syndecan-1 expression on neutrophils in patients with type 2 diabetes mellitus. Acta Diabetol 49, 41–46 (2012). https://doi.org/10.1007/s00592-011-0265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-011-0265-1

Keywords

Navigation