Skip to main content

Advertisement

Log in

Discovery of circulating blood biomarkers in patients with and without Modic changes of the lumbar spine: a preliminary analysis

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The following study aimed to determine the existence of blood biomarkers in symptomatic patients with or without lumbar Modic changes (MC).

Methods

A cross-sectional sub-analyses of a prospective cohort was performed. Fasting blood samples were collected from patients with and without lumbar MC who had undergone spinal fusion or microdiscectomy. An 80-plex panel and CCL5/RANTES were used to assess preoperative plasma cytokine concentrations. Patient demographics and imaging phenotypes were also assessed.

Results

Thirty-one subjects were analysed (n = 18 no MC; n = 13 MC). No significant differences were found in age, sex, body mass index, smoking and alcohol history, and surgical procedure (i.e. fusion, decompression) between the two groups (p > 0.05). Several statistically significant blood biomarkers in MC patients were identified, including elevated levels of C–C Motif Chemokine Ligand 5 (CCL5, p = 0.0006), while Macrophage Migration Inhibitory Factor (MIF) was significantly lower (p = 0.009). Additionally, C-X-C Motif Chemokine Ligand 5 (CXCL5, p = 0.052), Pentraxin 3 (PTX3, p = 0.06) and Galectin-3 (Gal-3, p = 0.07) showed potential relevance. Moreover, MC patients exhibited significantly higher levels of disc degeneration (p = 0.0001) and displacement severity (p = 0.020). Based on multivariate analyses and controlling for disc degeneration/displacement, CCL5 (OR 1.02; 95% CI 1.002–1.033; p = 0.028) and MIF (OR 0.60; 95% CI 0.382–0.951; p = 0.030) were independently associated with MC patients.

Conclusion

This “proof-of-concept” study is the first to identify specific and significantly circulating blood biomarkers associated with symptomatic patients with lumbar MC, independent of disc alterations of degeneration and/or bulges/herniations. Specifically, differences in CCL5 and MIF protein levels were significantly noted in MC patients compared to those without MC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vos T, Flaxman AD, Naghavi M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380(9859):2163–2196

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grabovac I, Dorner TE (2019) Association between low back pain and various everyday performances: activities of daily living, ability to work and sexual function. Wien Klin Wochenschr 131(21–22):541–549

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andersson GB (1999) Epidemiological features of chronic low-back pain. Lancet 354(9178):581–585

    Article  CAS  PubMed  Google Scholar 

  4. Fatoye F, Gebrye T, Mbada CE, Useh U (2023) Clinical and economic burden of low back pain in low-and middle-income countries: a systematic review. BMJ Open 13(4):e064119

    Article  PubMed  PubMed Central  Google Scholar 

  5. Karppinen J, Shen FH, Luk KD, Andersson GB, Cheung KM, Samartzis D (2011) Management of degenerative disk disease and chronic low back pain. Orthop Clin North Am 42(4):513–28

    Article  PubMed  Google Scholar 

  6. Smith A, Hancock M, O’Hanlon S et al (2022) The association between different trajectories of low back pain and degenerative imaging findings in young adult participants within the raine study. Spine 47(3):269–76

    Article  PubMed  Google Scholar 

  7. Wong AYL, Karppinen J, Samartzis D (2017) Low back pain in older adults: risk factors, management options and future directions. Scoliosis Spinal Disord 12:14

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lotz J, Fields A, Liebenberg E (2013) The role of the vertebral end plate in low back pain. Glob Spine J 3(3):153–163

    Article  CAS  Google Scholar 

  9. Mallow GM, Zepeda D, Kuzel TG et al (2022) ISSLS PRIZE in clinical science 2022: epidemiology, risk factors and clinical impact of juvenile Modic changes in paediatric patients with low back pain. Eur Spine J 31(5):1069–1079

    Article  PubMed  Google Scholar 

  10. Samartzis D, Mok FPS, Karppinen J, Fong DYT, Luk KDK, Cheung KMC (2016) Classification of Schmorl’s nodes of the lumbar spine and association with disc degeneration: a large-scale population-based MRI study. Osteoarthr Cartil 24(10):1753–1760

    Article  CAS  Google Scholar 

  11. Teraguchi M, Hashizume H, Oka H et al (2022) Detailed subphenotyping of lumbar Modic changes and their association with low back pain in a large population-based study: the wakayama spine study. Pain Ther 11(1):57–71

    Article  PubMed  Google Scholar 

  12. Mallow GM, Zepeda D, Kuzel TG et al (2022) ISSLS PRIZE in clinical science 2022: epidemiology, risk factors and clinical impact of juvenile Modic changes in paediatric patients with low back pain. Eur Spine J 31(5):1069–1079

    Article  PubMed  Google Scholar 

  13. Albert HB, Kjaer P, Jensen TS, Sorensen JS, Bendix T, Manniche C (2008) Modic changes, possible causes and relation to low back pain. Med Hypotheses 70(2):361–368

    Article  CAS  PubMed  Google Scholar 

  14. Jensen RK, Leboeuf-Yde C, Wedderkopp N, Sorensen JS, Jensen TS, Manniche C (2012) Is the development of Modic changes associated with clinical symptoms? A 14-month cohort study with MRI. Eur Spine J 21:2271–2279

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jensen TS, Karppinen J, Sorensen JS, Niinimäki J, Leboeuf-Yde C (2008) Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J 17:1407–1422

    Article  PubMed  PubMed Central  Google Scholar 

  16. Karppinen J, Solovieva S, Luoma K, Raininko R, Leino-Arjas P, Riihimäki H (2009) Modic changes and interleukin 1 gene locus polymorphisms in occupational cohort of middle-aged men. Eur Spine J 18:1963–1970

    Article  PubMed  PubMed Central  Google Scholar 

  17. Herger N, Bermudez-Lekerika P, Farshad M et al (2022) Should degenerated intervertebral discs of patients with Modic type 1 changes be treated with mesenchymal stem cells? Int J Mol Sci 23(5):2721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Modic MT, Masaryk TJ, Ross JS, Carter JR (1988) Imaging of degenerative disk disease. Radiology 168(1):177–186

    Article  CAS  PubMed  Google Scholar 

  19. Georgy M, Stern M, Murphy K (2017) What is the role of the bacterium propionibacterium acnes in type 1 Modic changes? A review of the literature. Can Assoc Radiol J 68(4):419–424

    Article  PubMed  Google Scholar 

  20. Dudli S, Ballatori A, Bay-Jensen A-C et al (2020) Serum biomarkers for connective tissue and basement membrane remodeling are associated with vertebral endplate bone marrow lesions as seen on MRI (Modic changes). Int J Mol Sci 21(11):3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grad S, Bow C, Karppinen J et al (2016) Systemic blood plasma CCL5 and CXCL6: potential biomarkers for human lumbar disc degeneration. Eur Cell Mater 31:1–10

    Article  CAS  PubMed  Google Scholar 

  22. Pedersen LM, Schistad E, Jacobsen LM, Røe C, Gjerstad J (2015) Serum levels of the pro-inflammatory interleukins 6 (IL-6) and-8 (IL-8) in patients with lumbar radicular pain due to disc herniation: a 12-month prospective study. Brain Behav Immun 46:132–136

    Article  CAS  PubMed  Google Scholar 

  23. Schistad EI, Espeland A, Pedersen LM, Sandvik L, Gjerstad J, Røe C (2014) Association between baseline IL-6 and 1-year recovery in lumbar radicular pain. Eur J Pain 18(10):1394–1401

    Article  CAS  PubMed  Google Scholar 

  24. Dudli S, Fields AJ, Samartzis D, Karppinen J, Lotz JC (2016) Pathobiology of Modic changes. Eur Spine J 25(11):3723–3734

    Article  PubMed  Google Scholar 

  25. Karppinen J, Koivisto K, Ketola J et al (2021) Serum biomarkers for Modic changes in patients with chronic low back pain. Eur Spine J 30:1018–1027

    Article  PubMed  Google Scholar 

  26. Määttä JH, Karppinen J, Paananen M, et al. (2016) Refined phenotyping of Modic changes. Medicine 95(22).

  27. Mok FPS, Samartzis D, Karppinen J, Fong DYT, Luk KDK, Cheung KMC (2016) Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J 16(1):32–41

    Article  PubMed  Google Scholar 

  28. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N (2001) Magnetic resonance classification of lumbar intervertebral disc degeneration. spine 26(17):1873–8

    Article  CAS  PubMed  Google Scholar 

  29. Modic MT, Steinberg P, Ross J, Masaryk T, Carter J (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166(1):193–199

    Article  CAS  PubMed  Google Scholar 

  30. Knights D, Kuczynski J, Charlson ES et al (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8(9):761–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y-H, Zhao C-Q, Jiang L-S, Chen X-D, Dai L-Y (2008) Modic changes: a systematic review of the literature. Eur Spine J 17(10):1289–1299

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Hou J, Shao M et al (2017) CXCL5 as an autocrine or paracrine cytokine is associated with proliferation and migration of hepatoblastoma HepG2 cells. Oncol Lett 14(6):7977–7985

    PubMed  PubMed Central  Google Scholar 

  33. Grieb G, Merk M, Bernhagen J, Bucala R (2010) Macrophage migration inhibitory factor (MIF): a promising biomarker. Drug News Perspect 23(4):257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu W, Liu D, Zheng J et al (2017) Annulus fibrosus cells express and utilize CC chemokine receptor 5 (CCR5) for migration. Spine J 17(5):720–726

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. (2018) PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair, and cancer. Physiological reviews.

  36. Hara A, Niwa M, Noguchi K et al (2020) Galectin-3 as a next-generation biomarker for detecting early stage of various diseases. Biomolecules 10(3):389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marques RE, Guabiraba R, Russo RC, Teixeira MM (2013) Targeting CCL5 in inflammation. Expert Opin Ther Targets 17(12):1439–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shea GK, Zhang C, Suen WS et al (2022) Oral zoledronic acid bisphosphonate for the treatment of chronic low back pain with associated Modic changes: a pilot randomized controlled trial. J Orthop Res® 40(12):2924–36

    Article  CAS  PubMed  Google Scholar 

  39. Freidin M, Kraatari M, Skarp S et al (2019) Genome-wide meta-analysis identifies genetic locus on chromosome 9 associated with Modic changes. J Med Genet 56(7):420–426

    Article  PubMed  Google Scholar 

  40. Karppinen J, Daavittila I, Solovieva S et al (2008) Genetic factors are associated with Modic changes in endplates of lumbar vertebral bodies. Spine 33(11):1236–1241

    Article  PubMed  Google Scholar 

  41. Wong AY, Mallow GM, Pinto SM et al (2023) The efficacy and safety of oral antibiotic treatment in patients with chronic low back pain and Modic changes: a systematic review and meta-analysis. JOR Spine 7(1):e1281

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li Y, Karppinen J, Cheah KS, Chan D, Sham PC, Samartzis D. (2021) Integrative analysis of metabolomic, genomic, and imaging-based phenotypes identify very-low-density lipoprotein as a potential risk factor for lumbar Modic changes. Eur Spine J 1–11.

  43. Samartzis D, Alini M, An HS, et al. (2018) Precision spine care: a new era of discovery, innovation, and global impact. SAGE Publications Sage CA: Los Angeles, CA 321–2

  44. Pulsatelli L, Dolzani P, Piacentini A et al (1999) Chemokine production by human chondrocytes. J Rheumatol 26(9):1992–2001

    CAS  PubMed  Google Scholar 

  45. Pattappa G, Peroglio M, Sakai D et al (2014) CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture. Eur Cells Mater eCM 27:124–136

    Article  CAS  PubMed  Google Scholar 

  46. Rannou F, Ouanes W, Boutron I et al (2007) High-sensitivity C-reactive protein in chronic low back pain with vertebral end-plate Modic signal changes. Arthritis Care Res 57(7):1311–1315

    Article  CAS  Google Scholar 

  47. Burke J, Watson R, McCormack D, Dowling F, Walsh M, Fitzpatrick J (2002) Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg British 84(2):196–201

    Article  CAS  Google Scholar 

  48. Sowa GA, Perera S, Bechara B et al (2014) Associations between serum biomarkers and pain and pain-related function in older adults with low back pain: a pilot study. J Am Geriatr Soc 62(11):2047–2055

    Article  PubMed  Google Scholar 

Download references

Funding

National Institutes of Health, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Grant # R21AR079679; Thomas J. Coogan Sr. MD Endowment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana V. Chee or Dino Samartzis.

Ethics declarations

Conflict of interest

Authors have no financial or conflicting interests to disclose in relation to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboushaala, K., Chee, A.V., Toro, S.J. et al. Discovery of circulating blood biomarkers in patients with and without Modic changes of the lumbar spine: a preliminary analysis. Eur Spine J 33, 1398–1406 (2024). https://doi.org/10.1007/s00586-024-08192-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-024-08192-y

Keywords

Navigation