Skip to main content
Log in

Adult spinal deformity correction surgery using age-adjusted alignment thresholds: clinical outcomes and mechanical complication rates. A systematic review of the literature

  • Review Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Adult spinal deformity (ASD) surgery gives good clinical outcomes but has a high rate of mechanical complications (MC). In 2016, Lafage described the age-adjusted alignment thresholds (AAAT) to adapt the correction in relation to patient’s age proposing less aggressive corrections for the elderly population. The aim of this review was to clarify the effectiveness of AAAT to achieve good health-related quality of life (HRQoL) and their relationship with post-operative MC.

Materials and methods

We performed a review of the literature, including articles reporting data on post-operative HRQoL and MC rates in relation to the AAAT. Data were stratified according to whether they matched the AAAT, dividing the population in undercorrected (U), matched (M) and overcorrected (O). The quality of the included studies was assessed using the GRADE and MINORS systems.

Results

Six articles reporting data from 1,825 patients were included. The different categories (U, M and O) had homogeneous pre-operative sagittal parameters (p > 0.05) that became statistically different after surgeries (p < 0.05). Proximal junctional kyphosis (PJK) was more frequent in the O group compared to U (p = 0.05). Post-operative HRQoL parameters were similar in the 3 groups (p > 0.05). The quality of the included studies was generally low with a high bias risk.

Conclusion

The results extrapolated from this review are interesting, as for the same HRQoL the U group had a lower MC rate. Unfortunately, the results are inconsistent, mainly because of the low quality of the included studies and the lack of reporting of some important patient- and surgery-related factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fehlings MG, Tetreault L, Nater A et al (2015) The Aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery 77(Suppl4):S1–S5. https://doi.org/10.1227/NEU.0000000000000953

    Article  PubMed  Google Scholar 

  2. Ames CP, Scheer JK, Lafage V, Smith JS, Bess S, Berven SH, Mundis GM, Sethi RK, Deinlein DA, Coe JD, Hey LA, Daubs MD (2016) Adult spinal deformity: epidemiology, health impact, evaluation, and management. Spine Deform 4:310–322. https://doi.org/10.1016/j.jspd.2015.12.009

    Article  PubMed  Google Scholar 

  3. Passias PG, Horn SR, Frangella NJ, Poorman GW, Vasquez-Montes D, Diebo BG, Bortz CA, Segreto FA, Moon JY, Zhou PL, Vira S, Sure A, Beaubrun B, Tishelman JC, Ramchandran S, Jalai CM, Bronson W, Wang C, Lafage V, Buckland AJ, Errico TJ (2018) Full-body analysis of adult spinal deformity patients’ age-adjusted alignment at 1 Year. World Neurosurg. 114:e775–e784. https://doi.org/10.1016/j.wneu.2018.03.079

    Article  PubMed  Google Scholar 

  4. Schwab FJ, Blondel B, Bess S, Hostin R, Shaffrey CI, Smith JS, Boachie-Adjei O, Burton DC, Akbarnia BA, Mundis GM, Ames CP, Kebaish K, Hart RA, Farcy JP, Lafage V, International Spine Study Group (ISSG) (2013) Radiographical spinopelvic parameters and disability in the setting of adult spinal deformity: a prospective multicenter analysis. Spine Phila Ps 1976 38(13):E803–E812. https://doi.org/10.1097/BRS.0b013e318292b7b9

    Article  Google Scholar 

  5. Passias PG, Kummer N, Imbo B, Lafage V, Lafage R, Smith JS, Line B, Vira S, Schoenfeld AJ, Gum JL, Daniels AH, Klineberg EO, Gupta MC, Kebaish KM, Jain A, Neuman BJ, Chou D, Carreon LY, Hart RA, Burton DC, Shaffrey CI, Ames CP, Schwab FJ, Hostin Jr RA, Bess S, International Spine Study Group (2022) Inmprovements in Outcomes and Cost After Adult Spinal Deformity Corrective Surgery Between 2008 and 2019. Spine Phila Pa 1976. https://doi.org/10.1097/BRS.0000000000004474

    Article  Google Scholar 

  6. Kim YJ, Bridwell KH, Lenke LG, Glattes CR, Rhim S, Cheh G (2008) Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine Phila Pa 1976 33(20):2179–2184. https://doi.org/10.1097/BRS.0b013e31817c0428

    Article  PubMed  Google Scholar 

  7. De Wald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusion for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine Phila 1976 31(19 Suppl):S144–S151. https://doi.org/10.1097/01.brs.0000236893.65878.39

    Article  Google Scholar 

  8. Smith JS, Lafage V, Shaffrey CI et al (2016) Outcomes of operative and nonoperative treatment for adult spinal deformity: a prospective, multicenter propensity-matched cohort assessment with minimum 2-year follow-up. Neurosurgery 78(6):851–861. https://doi.org/10.1227/NEU.0000000000001116

    Article  PubMed  Google Scholar 

  9. Quarto E, Zanirato A, Ursino C, Traverso G, Russo A, Formica M (2021) Adult spinal deformity surgery: posterior three-column osteotomies vs anterior lordotic cages with posterior fusion Complications, clinical and radiological results A systematic review of the literature. Eur Spine J 30(11):3150–3161. https://doi.org/10.1007/s00586-021-06925-x

    Article  Google Scholar 

  10. Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J Noc 25(11):3630–3637. https://doi.org/10.1007/s00586-016-4485-5

    Article  Google Scholar 

  11. Yilgor C, Sogunmez N, Boissiere L, Yavuz Y, Obeid I, Kleinstück F, Pérez-Grueso FJS, Acaroglu E, Haddad S, Mannion AF, Pellise F, Alanay A (2017) Global alignment and proportion (GAP) score: development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J Bone Joint Surg Am 99:1661–1672. https://doi.org/10.2106/jbjs.16.01594

    Article  PubMed  Google Scholar 

  12. Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian H, Shaffrey C, Tribus C, Lafage V (2012) Scoliosis research society – schwab adult spinal deformity classification a validation study. Spine 37(12):1077–1082. https://doi.org/10.1097/BRS.0b013e31823e15e2

    Article  PubMed  Google Scholar 

  13. Banno T, Togawa D, Arima H, Hasegawa T, Yamato Y, Kobayashi S, Yasuda T, Oe S, Hoshino H, Matsuyama Y (2016) The cohort study for the determination of reference values for spinopelvic parameters (T1 pelvic angle and global tilt) in elderly volunteers. Eur Spine J 25(11):3687–3693. https://doi.org/10.1007/s00586-016-4411-x

    Article  PubMed  Google Scholar 

  14. Hasegawa K, Okamoto M, Hatsushikano S, Shimoda H, Ono M, Watanabe K (2016) Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J 25(11):3675–3686. https://doi.org/10.1007/s00586-016-4702-2

    Article  PubMed  Google Scholar 

  15. Muramoto A, Imagama S, Ito Z, Hirano K, Tauchi R, Ishiguro N, Hasegawa Y (2013) Threshold values of physical performance test for locomotive syndrome. J Orthop Sci 18(4):618–626. https://doi.org/10.1007/s00776-013-0382-5

    Article  PubMed  Google Scholar 

  16. Lafage R, Schwab F, Challier V, Henry JK, Gum J, Smith J, Hostin R, Shaffrey C, Kim HJ, Ames C, Scheer J, Klineberg E, Bess S, Burton D, Lafage V, International Spine Study Group (2016) Defining spino-pelvic alignment thresholds should operative goals in adult spinal deformity surgery account for age? Spine Phila Pa 1976 41(1):62–68. https://doi.org/10.1097/BRS.0000000000001171

    Article  Google Scholar 

  17. Tsuboi H, Nishimura Y, Sakata T, Ohko H, Tanina H, Kouda K, Nakamura T, Umezu Y, Tajima F (2013) Age-related sex differences in erector spinae muscle endurance using surface electromyographic power spectral analysis in healthy humans. Spine J 13(12):1928–1933. https://doi.org/10.1016/j.spinee.2013.06.060

    Article  PubMed  Google Scholar 

  18. Lord SR, Clark RD, Webster IW (1991) Postural stability and associated physiological factors in a population of aged persons. J Gerontol 46(3):M69-76. https://doi.org/10.1093/geronj/46.3.m69

    Article  CAS  PubMed  Google Scholar 

  19. Eguchi Y, Suzuki M, Yamanaka H, Tamai H, Kobayashi T, Orita S, Yamauchi K, Suzuki M, Inage K, Fujimoto K, Kanamoto H, Abe K, Aoki Y, Toyone T, Ozawa T, Takahashi K, Ohtori S (2017) Associations between sarcopenia and degenerative lumbar scoliosis in older women. Scoliosis Spinal Disord 12:9. https://doi.org/10.1186/s13013-017-0116-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jalai CM, Cruz DL, Diebo BG, Poorman G, Lafage R, Bess S, Ramchandran S, Day LM, Vira S, Liabaud B, Henry JK, Schwab FJ, Lafage V, Passias PG (2017) Full-body analysis of age-adjusted alignment in adult spinal deformity patients and lower-limb compensation. Spine Phila Pa 1976 42(9):653–661. https://doi.org/10.1097/BRS.0000000000001863

    Article  PubMed  Google Scholar 

  21. Cumpston M, Li T, Page MJ, Chandler J, Welch VA, Higgins JP, Thomas J (2019) Updated guidance for trusted systematic reviews a new edition of the cochrane handbook for systematic reviews of interventions Cochrane Database. Syst Rev, doi https://doi.org/10.1002/14651858.ED000142;

  22. Moher D, Liberati A, Tetzlaf J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 62:1006–1012. https://doi.org/10.1016/j.jclinepi.2009.06.005

    Article  PubMed  Google Scholar 

  23. OCEBM Levels of Evidence Working Group*. “The Oxford Levels of Evidence 2”. Oxford Centre for Evidence-Based Medicine. https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ ocebm-levels-of-evidence;

  24. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso Coello P, Schünemann HJ (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926. https://doi.org/10.1136/bjm.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  25. Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J (2003) Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg 73:712–716. https://doi.org/10.1046/j.1445-2197.2003.02748.x

    Article  PubMed  Google Scholar 

  26. Lafage R, Schwab F, Glassman S, Bess S, Harris B, Sheer J, Hart R, Line B, Henry J, Burton D, Kim H, Klineberg E, Ames C, Lafage V, International Spine Study Group (2017) Age-adjusted alignment goals have the potential to reduce PJK. Spine Phila Pa 1976 42(17):1275–1282. https://doi.org/10.1097/BRS.0000000000002146

    Article  Google Scholar 

  27. Scheer JK, Lafage R, Schwab FJ, Liabaud B, Smith JS, Mundis GM, Hostin R, Shaffrey CI, Burton DC, Hart RA, Kim HJ, Bess S, Gupta M, Lafage V, Ames CP, International Spine Study Group (2018) Under correction of sagittal deformities based on age-adjusted alignment thresholds leads to worse health-related quality of life whereas over correction provides no additional benefit. Spine Phila Pa 1976 43(6):388–393. https://doi.org/10.1097/BRS.0000000000002435

    Article  Google Scholar 

  28. Passias PG, Jalai CM, Diebo BG, Cruz DL, Poorman GW, Buckland AJ, Day LM, Horn SR, Liabaud B, Lafage R, Soroceanu A, Baker JF, McClelland S 3rd, Oren JH, Errico TJ, Schwab FJ, Lafage V (2019) Full-body radiographic analysis of postoperative deviations from age-adjusted alignment goals in adult spinal deformity correction and related compensatory recruitment. Int J Spine Surg. 13(2):205–214

    Article  PubMed  PubMed Central  Google Scholar 

  29. Byun CW, Cho JH, Lee CS, Lee DH, Hwang CJ (2022) Effect of overcorrection on proximal junctional kyphosis in adult spinal deformity: analysis by age-adjusted ideal sagittal alignment. Spine J 22(4):635–645. https://doi.org/10.1016/j.spinee.2021.10.019

    Article  PubMed  Google Scholar 

  30. Park SJ, Lee CS, Kang BJ, Shin TS, Kim IS, Park JS, Lee KH, Shin DH (2022) Validation of age-adjusted ideal sagittal alignment in terms of proximal junctional failure and clinical outcomes in adult spinal deformity. Spine Phila Pa 1976 47(24):1737–1745. https://doi.org/10.1097/BRS.0000000000004449

    Article  PubMed  Google Scholar 

  31. Lafage R, Smith JS, Elysee J, Passias P, Bess S, Klineberg E, Kim HJ, Shaffrey C, Burton D, Hostin R, Mundis G, Ames C, Schwab F, Lafage V, International Spine Study Group (2022) Sagittal age-adjusted score (SAAS) for adult spinal deformity (ASD) more effectively predicts surgical outcomes and proximal junctional kyphosis than previous classifications. Spine Deform. 10(1):121–131. https://doi.org/10.1007/s43390-021-00397-1

    Article  Google Scholar 

  32. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein S (ed) The pediatric spine: principles and practice. Raven Press, pp 479–496

    Google Scholar 

  33. Le Huec JC, Thompson W, Mohsinaly Y, Barrey C, Faundez A (2019) Sagittal balance of the spine. Eur Spine J 28(9):1889–1905. https://doi.org/10.1007/s00586-019-06083-1

    Article  PubMed  Google Scholar 

  34. Quarto E, Zanirato A, Pellegrini M, Vaggi S, Vitali F, Bourret S, Le Huec JC, Formica M (2022) GAP score potential in predicting post-operative spinal mechanical complications: a systematic review of the literature. Eur Spine J 31(12):3286–3295. https://doi.org/10.1007/s00586-022-07386-6

    Article  CAS  PubMed  Google Scholar 

  35. Formica M, Quarto E, Zanirato A, Mosconi L, Lontaro-Baracchini M, Alessio-Mazzola M, Felli L (2020) ALIF in the correction of spinal sagittal misalignment a systematic review of literature. Eur Spine J. https://doi.org/10.1007/s00586-020-06598-y

    Article  PubMed  Google Scholar 

  36. Arima H, Carreon LY, Glassman SD, Yamato Y, Hasegawa T, Togawa D, Kobayashi S, Yoshida G, Yasuda T, Banno T, Oe S, Mihara Y, Matsuyama Y (2018) Age variation in the minimum clinically important difference in SRS-22r after surgical treatment for adult spinal deformity- a single institution analysis in Japan. J Orthop Sci 23(1):20–25. https://doi.org/10.1016/j.jos.2017.09.015

    Article  PubMed  Google Scholar 

  37. Schwab F, Patel A, Ungar B, Farcy JP, Lafage V (2010) Adult spinal deformity – postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine Phila Pa 35(25):2224–2232. https://doi.org/10.1097/BRS.0b013e3181ee6bd4

    Article  Google Scholar 

  38. Amabile C, Le Huec JC, Skalli W (2016) Invariance of head pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J 27(2):458–466. https://doi.org/10.1007/s00586-016-4830-8

    Article  PubMed  Google Scholar 

  39. Le Huec JC, Sardar ZM, Quarto E, Cerpa M, Kelly MP, Hasegawa K, Dennis Hey HW, Wong HK, Riahi H, Lenke LG, Bourret S; MEANS Study group (2022) Cervical inclination angle: normative values in an adult multiethnic asymptomatic population. Neurospine. 19(4):883–888. https://doi.org/10.14245/ns.2244892.446

    Article  Google Scholar 

  40. Le Huec JC, Richards J, Tsoupras A, Price R, Leglise A, Faundez AA (2018) The mechanism in junctional failure of thoraco-lumbar fusion Part I: Biomechanical analysis of mechanism responsible of vertebral overstress and description of the cervical inclination angle (CIA). Eur Spine J 27(Suppl 1):129–138

    Article  PubMed  Google Scholar 

  41. Faundez AA, Richards J, Maxy Price R, Leglise A, Le Huec JC (2018) The mechanism in junctional failure of thoraco-lumbar fusions Part II: Analysis of a series of PJK after thoraco-lumbar fusion to determine parameters allowing to predict the risk of junctional breakdown. Eur Spine J 27(Suppl 1):139–148. https://doi.org/10.1007/s00586-017-5426-7

    Article  PubMed  Google Scholar 

  42. Passias PG, Bortz C, Alas H, Moattari K, Brown A, Pierce KE, Manning J, Ayres EW, Varlotta C, Wang E, Williamson TK, Imbo B, Joujon-Roche R, Tretiakov P, Krol O, Janjua B, Sciubba D, Diebo BG, Protopsaltis T, Buckland AJ, Schwab FJ, Lafage R, Lafage V (2022) Improved surgical correction relative to patien-specific ideal spinopelvic alignment reduces pelvic nonresponse for severely malaligned adult spinal deformity patients. Int J Spine Surg. 16(3):530–539. https://doi.org/10.14444/8254

    Article  PubMed  PubMed Central  Google Scholar 

  43. Smith JS, Klineberg E, Schwab F et al (2013) Change in classification grade by the SRS-schwab adult spinal deformity classification predicts impact on health-related quality of life measures: prospective analysis of operative and nonoperative treatment. Spine Phila Pa 1976 38(19):1663–1671

    Article  PubMed  Google Scholar 

  44. Dial BL, Hills JM, Smith JS, Sardi JP, Lazaro B, Shaffrey CI, Bess S, Schwab FJ, Lafage V, Lafage R, Kelly MP, Bridwell KH (2022) The impact of lumbar alignment targets on mechanical complications after adult lumbar scoliosis surgery. Eur Spine J 31(6):1573–1582. https://doi.org/10.1007/s00586-022-07200-3

    Article  PubMed  Google Scholar 

  45. Park P, Fu KM, Mummaneni PV, Uribe JS, Wang MY, Tran S, Kanter AS, Nunley PD, Okonkwo DO, Shaffrey CI, Mundis GM, Chou D, Eastlack R, Anand N, Than KD, Zavatsky JM, Fessler RG, International Spine Study Group (2018) The impact of age on surgical goals for spinopelvic alignment in minimally invasive surgery for adult spinal deformity. J Neurosurg Spine 29(5):560–564. https://doi.org/10.3171/2018.4.SPINE171153

    Article  Google Scholar 

  46. Laouissat F, Sebaaly A, Gehrchen M, Roussouly P (2018) Classifcation of normal sagittal spine alignment: refounding the roussouly classifcation. Eur Spine J 27:2002–2011

    Article  PubMed  Google Scholar 

  47. Jang JS, Lee SH, Min JH, Maeng DH (2007) Changes in sagittal alignment after restoration of lower lumbar lordosis in patients with degenerative fat back syndrome. J Neurosurg Spine 7(4):387–392. https://doi.org/10.3171/SPI-07/10/387

    Article  PubMed  Google Scholar 

  48. Zanirato A, Damilano M, Formica M, Piazzolla A, Lovi A, Villafane JH, Berjano P (2018) Complications in adult spine deformity surgery: a systematic review of the recent literature with reporting of aggregated incidences. Eur Spine J 27(9):2272–2284. https://doi.org/10.1007/s00586-018-5535-y

    Article  PubMed  Google Scholar 

  49. Quarto E, Bourret S, Rebollar Y, Mannem A, Cloche T, Balabaud L, Boue L, Thompson W, Le Huec JC (2023) Team management in complex posterior spinal surgery allows blood loss limitation. Int Orthop 47(1):225–231. https://doi.org/10.1007/s00264-022-05586-9

    Article  PubMed  Google Scholar 

  50. He K, Head J, Mouchtouris N, Hines K, Shea P, Shmidt R et al (2020) The implications of paraspinal muscle atrophy in low back pain, thoracolumbar pathology, and clinical outcomes after spine surgery: a review of the literature. Global Spine J 10(5):657–666. https://doi.org/10.1177/2192568219879087

    Article  PubMed  Google Scholar 

  51. Yagi M, Hosogane N, Watanabe K, Asazuma T, Matsumoto M (2016) The paravertebral muscle and psoas for the maintenance of global spinal alignment in patient with degenerative lumbar scoliosis. Spine J 16:451–458. https://doi.org/10.1016/j.spinee.2015.07.001

    Article  PubMed  Google Scholar 

  52. Yagi M, Michikawa T, Hosogane N, Fujita N, Okada E, Suzuki S et al (2019) The 5-Item modifed frailty index is predictive of severe adverse events in patients undergoing surgery for adult spinal deformity. Spine 44:E1083-1091. https://doi.org/10.1097/BRS.0000000000003063

    Article  PubMed  Google Scholar 

  53. Haddad S, Pizones J, Raganato R, Safaee MM, Scheer JK, Pellisé F, Ames CP (2023) Future data points to implement in adult spinal deformity assessment for artificial intelligence modeling prediction: the importance of the biological dimension. Int J Spine Surg. https://doi.org/10.14444/8502

    Article  PubMed  PubMed Central  Google Scholar 

  54. Browd SR, Park C, Donoho DA (2023) Potential applications of artificial intelligence and machine learning in spine surgery across the continuum of care. Int J Spine Surg. https://doi.org/10.14444/8507

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Beatrice Dozin for data statistical analysis and Viviana Quarto for her English revision.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

Emanuele Quarto and Andrea Zanirato performed the first review draft and statistical analysis; Marco Spatuzzi, Federico Vitali and Stephane Bourret performed data analysis and wrote the results; Jean-Charles Le Huec and Matteo Formica performed the final manuscript review and language editing.

Corresponding author

Correspondence to E. Quarto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

No ethical approval was needed for this review.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quarto, E., Zanirato, A., Vitali, F. et al. Adult spinal deformity correction surgery using age-adjusted alignment thresholds: clinical outcomes and mechanical complication rates. A systematic review of the literature. Eur Spine J 33, 553–562 (2024). https://doi.org/10.1007/s00586-023-07949-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-023-07949-1

Keywords

Navigation