Skip to main content

Advertisement

Log in

Traumatic cervical spinal cord injury: relationship of MRI findings to initial neurological impairment

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To quantify the degree of available space for the cord and cord swelling in patients following traumatic cervical spinal cord injury (TCSCI), and to assess the relationship among the available space for the cord, cord swelling, and the severity of neurological impairment.

Methods

This study included 91 patients. The following indexes were measured by two blinded observers: maximum cord available area (CAAmax) and maximum cord swelling area (CSAmax). The American Spinal Injury Association (ASIA) impairment scale (AIS) grades were used to evaluate the extent of neurological injury. Relationship among CAAmax, CSAmax, and initial AIS grades was assessed via univariate and multivariate analyses.

Results

Patients who were AIS grade A (complete injury) demonstrated significantly greater median CAAmax and CSAmax than AIS grade C or D (incomplete injury) (P < 0.01). Multivariate analysis identified only CAAmax (OR 20.88 [95% CI 1.50–291.21]; P = 0.024) and CSAmax (OR 17.84 [95% CI 1.15–276.56]; P = 0.039) were identified as independently influencing the likelihood of complete injury at the initial assessment. The classification accuracy was best for CAAmax and CSAmax; areas under the curve were 0.8998 (95% CI 0.7881–1.0000) and 0.9167 (95% CI 0.8293–1.0000), respectively.

Conclusion

The present study provides a novel radiologic method for identifying the severity of TCSCI with T2-weighted MRI findings. Greater available space for the cord (CAAmax > 38%) and cord swelling (CSAmax > 29%) can be used to identify patients at risk for TCSCI and both imaging characteristics are associated with an increased likelihood of severe neurological deficits.

Level of evidence

Diagnostic: individual cross-sectional studies with consistently applied reference standard and blinding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van den Berg ME, Castellote JM, Mahillo-Fernandez I, de Pedro-Cuesta J (2010) Incidence of spinal cord injury worldwide: a systematic review. Neuroepidemiology 34:184–192; discussion 192

  2. Jazayeri SB, Beygi S, Shokraneh F, Hagen EM, Rahimi-Movaghar V (2015) Incidence of traumatic spinal cord injury worldwide: a systematic review. Eur Spine J 24:905–918

    Article  PubMed  Google Scholar 

  3. Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol 6:309–331

    PubMed  PubMed Central  Google Scholar 

  4. Chen Y, He Y, DeVivo MJ (2016) Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972–2014. Arch Phys Med Rehabil 97:1610–1619

    Article  PubMed  Google Scholar 

  5. Miyanji F, Furlan JC, Aarabi B, Arnold PM, Fehlings MG (2007) Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome–prospective study with 100 consecutive patients. Radiology 243:820–827

    Article  PubMed  Google Scholar 

  6. Bozzo A, Marcoux J, Radhakrishna M, Pelletier J, Goulet B (2011) The role of magnetic resonance imaging in the management of acute spinal cord injury. J Neurotrauma 28:1401–1411

    Article  PubMed  PubMed Central  Google Scholar 

  7. Machino M, Yukawa Y, Ito K, Nakashima H, Kanbara S, Morita D (1976) Kato F (2011) Can magnetic resonance imaging reflect the prognosis in patients of cervical spinal cord injury without radiographic abnormality? Spine (Phila Pa 1976) 36:E1568–E1572

    Article  Google Scholar 

  8. Andreoli C, Colaiacomo MC, Rojas Beccaglia M, Di Biasi C, Casciani E, Gualdi G (2005) MRI in the acute phase of spinal cord traumatic lesions: Relationship between MRI findings and neurological outcome. Radiol Med 110:636–645

    PubMed  Google Scholar 

  9. Flanders AE, Spettell CM, Tartaglino LM, Friedman DP, Herbison GJ (1996) Forecasting motor recovery after cervical spinal cord injury: value of MR imaging. Radiology 201:649–655

    Article  CAS  PubMed  Google Scholar 

  10. Flanders AE, Spettell CM, Friedman DP, Marino RJ, Herbison GJ (1999) The relationship between the functional abilities of patients with cervical spinal cord injury and the severity of damage revealed by MR imaging. AJNR Am J Neuroradiol 20:926–934

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Marciello MA, Flanders AE, Herbison GJ, Schaefer DM, Friedman DP, Lane JI (1993) Magnetic resonance imaging related to neurologic outcome in cervical spinal cord injury. Arch Phys Med Rehabil 74:940–946

    CAS  PubMed  Google Scholar 

  12. Cotler HB, Kulkarni MV, Bondurant FJ (1988) Magnetic resonance imaging of acute spinal cord trauma: preliminary report. J Orthop Trauma 2:1–4

    Article  CAS  PubMed  Google Scholar 

  13. Shimada K, Tokioka T (1999) Sequential MR studies of cervical cord injury: correlation with neurological damage and clinical outcome. Spinal Cord 37:410–415

    Article  CAS  PubMed  Google Scholar 

  14. Boldin C, Raith J, Fankhauser F, Haunschmid C, Schwantzer G (1976) Schweighofer F (2006) Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine (Phila Pa 1976) 31:554–559

    Article  Google Scholar 

  15. Furlan JC, Fehlings MG, Massicotte EM, Aarabi B, Vaccaro AR, Bono CM, Madrazo I, Villanueva C, Grauer JN (1976) Mikulis D (2007) A quantitative and reproducible method to assess cord compression and canal stenosis after cervical spine trauma: a study of interrater and intrarater reliability. Spine (Phila Pa 1976) 32:2083–2091

    Article  Google Scholar 

  16. Furlan JC, Kailaya-Vasan A, Aarabi B (1976) Fehlings MG (2011) A novel approach to quantitatively assess posttraumatic cervical spinal canal compromise and spinal cord compression: a multicenter responsiveness study. Spine (Phila Pa 1976) 36:784–793

    Article  Google Scholar 

  17. Gupta R, Mittal P, Sandhu P, Saggar K, Gupta K (2014) Correlation of qualitative and quantitative MRI parameters with neurological status: a prospective study on patients with spinal trauma. J Clin Diagn Res 8:Rc13–Rc17

    PubMed  PubMed Central  Google Scholar 

  18. Talbott JF, Whetstone WD, Readdy WJ, Ferguson AR, Bresnahan JC, Saigal R, Hawryluk GW, Beattie MS, Mabray MC, Pan JZ, Manley GT, Dhall SS (2015) The Brain and Spinal Injury Center score: a novel, simple, and reproducible method for assessing the severity of acute cervical spinal cord injury with axial T2-weighted MRI findings. J Neurosurg Spine 23:495–504

    Article  PubMed  Google Scholar 

  19. Aarabi B, Sansur CA, Ibrahimi DM, Simard JM, Hersh DS, Le E, Diaz C, Massetti J, Akhtar-Danesh N (2017) Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA impairment scale grade conversion following decompressive surgery in cervical spinal cord injury. Neurosurgery 80:610–620

    Article  PubMed  Google Scholar 

  20. Martineau J, Goulet J, Richard-Denis A, Mac-Thiong JM (2019) The relevance of MRI for predicting neurological recovery following cervical traumatic spinal cord injury. Spinal Cord 57:866–873

    Article  PubMed  Google Scholar 

  21. Fehlings MG, Rao SC, Tator CH, Skaf G, Arnold P, Benzel E, Dickman C, Cuddy B, Green B, Hitchon P, Northrup B, Sonntag V, Wagner F (1976) Wilberger J (1999) The optimal radiologic method for assessing spinal canal compromise and cord compression in patients with cervical spinal cord injury Part II: results of a multicenter study. Spine (Phila Pa 1976) 24:605–613

    Article  Google Scholar 

  22. Kirshblum SC, Burns SP, Biering-Sorensen F, Donovan W, Graves DE, Jha A, Johansen M, Jones L, Krassioukov A, Mulcahey MJ, Schmidt-Read M, Waring W (2011) International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med 34:535–546

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  CAS  PubMed  Google Scholar 

  24. Rüegg TB, Wicki AG, Aebli N, Wisianowsky C, Krebs J (2015) The diagnostic value of magnetic resonance imaging measurements for assessing cervical spinal canal stenosis. J Neurosurg Spine 22:230–236

    Article  PubMed  Google Scholar 

  25. Aebli N, Rüegg TB, Wicki AG, Petrou N, Krebs J (2013) Predicting the risk and severity of acute spinal cord injury after a minor trauma to the cervical spine. Spine J 13:597–604

    Article  PubMed  Google Scholar 

  26. Song KJ, Ko JH, Choi BW (2016) Relationship between magnetic resonance imaging findings and spinal cord injury in extension injury of the cervical spine. Eur J Orthop Surg Traumatol 26:263–269

    Article  PubMed  Google Scholar 

  27. Larson PS, Christiano JA Jr, Raque GH, Shields CB (1999) Emergency magnetic resonance imaging of cervical spinal cord injuries: clinical correlation and prognosis. Neurosurgery 45:956–957

    Article  CAS  PubMed  Google Scholar 

  28. Hackney DB, Asato R, Joseph PM, Carvlin MJ, McGrath JT, Grossman RI, Kassab EA, DeSimone D (1986) Hemorrhage and edema in acute spinal cord compression: demonstration by MR imaging. Radiology 161:387–390

    Article  CAS  PubMed  Google Scholar 

  29. Schaefer DM, Flanders AE, Osterholm JL, Northrup BE (1992) Prognostic significance of magnetic resonance imaging in the acute phase of cervical spine injury. J Neurosurg 76:218–223

    Article  CAS  PubMed  Google Scholar 

  30. Davies KM, Recker RR, Heaney RP (1989) Normal vertebral dimensions and normal variation in serial measurements of vertebrae. J Bone Miner Res 4:341–349

    Article  CAS  PubMed  Google Scholar 

  31. Aarabi B, Simard JM, Kufera JA, Alexander M, Zacherl KM, Mirvis SE, Shanmuganathan K, Schwartzbauer G, Maulucci CM, Slavin J, Ali K, Massetti J, Eisenberg HM (2012) Intramedullary lesion expansion on magnetic resonance imaging in patients with motor complete cervical spinal cord injury. J Neurosurg Spine 17:243–250

    Article  PubMed  PubMed Central  Google Scholar 

  32. Skeers P, Battistuzzo CR, Clark JM, Bernard S, Freeman BJC, Batchelor PE (2018) Acute thoracolumbar spinal cord injury: relationship of cord compression to neurological outcome. J Bone Joint Surg Am 100:305–315

    Article  PubMed  Google Scholar 

  33. Rutges JPHJ, Kwon BK, Heran M, Ailon T, Street JT, Dvorak MF (2017) A prospective serial MRI study following acute traumatic cervical spinal cord injury. Eur Spine J 26:2324–2332

    Article  PubMed  Google Scholar 

  34. Balentine JD (1978) Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 39:236–253

    CAS  PubMed  Google Scholar 

  35. Dohrmann GJ, Wagner FC Jr, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J Neurosurg 35:263–271

    Article  CAS  PubMed  Google Scholar 

  36. Fairholm DJ, Turnbull IM (1971) Microangiographic study of experimental spinal cord injuries. J Neurosurg 35:277–286

    Article  CAS  PubMed  Google Scholar 

  37. Iizuka H, Yamamoto H, Iwasaki Y, Yamamoto T, Konno H (1987) Evolution of tissue damage in compressive spinal cord injury in rats. J Neurosurg 66:595–603

    Article  CAS  PubMed  Google Scholar 

  38. Wagner FC Jr, Dohrmann GJ, Bucy PC (1971) Histopathology of transitory traumatic paraplegia in the monkey. J Neurosurg 35:272–276

    Article  PubMed  Google Scholar 

  39. Le E, Aarabi B, Hersh DS, Shanmuganathan K, Diaz C, Massetti J, Akhtar-Danesh N (2015) Predictors of intramedullary lesion expansion rate on MR images of patients with subaxial spinal cord injury. J Neurosurg Spine 22:611–621

    Article  PubMed  Google Scholar 

  40. Presciutti SM, DeLuca P, Marchetto P, Wilsey JT, Shaffrey C, Vaccaro AR (2009) Mean subaxial space available for the cord index as a novel method of measuring cervical spine geometry to predict the chronic stinger syndrome in American football players. J Neurosurg Spine 11:264–271

    Article  PubMed  Google Scholar 

  41. Bammer R, Fazekas F, Augustin M, Simbrunner J, Strasser-Fuchs S, Seifert T, Stollberger R, Hartung HP (2000) Diffusion-weighted MR imaging of the spinal cord. AJNR Am J Neuroradiol 21:587–591

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Cheng or Ning Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, C., Zhao, L., Wu, J. et al. Traumatic cervical spinal cord injury: relationship of MRI findings to initial neurological impairment. Eur Spine J 30, 3666–3675 (2021). https://doi.org/10.1007/s00586-021-06996-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06996-w

Keywords

Navigation