Skip to main content

Advertisement

Log in

Biomechanical performance of bicortical versus pericortical bone trajectory (CBT) pedicle screws

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The cortical bone trajectory (CBT) is an alternative to the traditional pedicle screw trajectory (TT) in posterior spinal instrumentation, enhancing screw contact with cortical bone and therefore increasing fixation strength. Additional to the trajectory, insertion depth (pericortical vs. bicortical placement) could be a relevant factor affecting the fixation strength. However, the potential biomechanical benefit of a bicortical placement of CBT screws is unknown. Therefore, the aim of this study was to quantify the fixation strength of pericortical- versus bicortical-CBT (pCBT versus bCBT) screws in a randomized cadaveric study.

Methods

Pedicle screws were either placed pericortical or bicortical with a CBT in 20 lumbar vertebrae (2 × 20 instrumented pedicles) from four human spine cadavers by using patient-specific templates. Instrumented specimens underwent physiological cyclic loading testing (1′800′000 cycles, 10 Hz), including shear and tension loads as well as bending moments. Translational and angular displacements of the screws were quantified and compared between the two techniques.

Results

There was a slight decrease in translational (0.2 mm ± 0.09 vs. 0.24 mm ± 0.11) and angular displacements (0.06° ± 0.05 vs. 0.13° ± 0.11) of bCBT screws when compared with pCBT screws after 1′800′000 cycles. However, the results were non-significant (p > 0.05).

Conclusion

The authors do not recommend placing CBT screws bicortically, as no relevant biomechanical advantage is gained while the potential risk for iatrogenic injury to structures anterior to the spine is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

MATLAB R2018a, MathWorks, Natick, USA.

References

  1. Hu SS (1997) Internal fixation in the osteoporotic spine. Spine (Phila Pa 1976) 22:43S-48S. https://doi.org/10.1097/00007632-199712151-00008

    Article  CAS  Google Scholar 

  2. Okuyama K, Abe E, Suzuki T et al (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 1(6):402–7. https://doi.org/10.1016/s1529-9430(01)00078-x

    Article  CAS  PubMed  Google Scholar 

  3. Wittenberg RH, Shea M, Swartz DE et al (1991) Importance of bone mineral density in instrumented spine fusions. Spine (Phila Pa 1976) 16(6):647–52. https://doi.org/10.1097/00007632-199106000-00009

    Article  CAS  Google Scholar 

  4. Santoni BG, Hynes RA, McGilvray KC et al (2009) Cortical bone trajectory for lumbar pedicle screws. Spine J 9:366–373. https://doi.org/10.1016/j.spinee.2008.07.008

    Article  CAS  PubMed  Google Scholar 

  5. Mobbs RJ (2013) The “Medio-Latero-Superior Trajectory Technique”: an alternative cortical trajectory for pedicle fixation. Orthop Surg 5:56–59. https://doi.org/10.1111/os.12027

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matsukawa K, Taguchi E, Yato Y et al (2015) Evaluation of the fixation strength of pedicle screws using cortical bone trajectory. Spine (Phila Pa 1976) 40(15):E873–E878. https://doi.org/10.1097/BRS.0000000000000983

    Article  Google Scholar 

  7. Sansur CA, Caffes NM, Ibrahimi DM et al (2016) Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine 25:467–476. https://doi.org/10.3171/2016.2.SPINE151046

    Article  PubMed  Google Scholar 

  8. Matsukawa K, Yato Y, Nemoto O et al (2013) Morphometric measurement of cortical bone trajectory for lumbar pedicle screw insertion using computed tomography. J Spinal Disord Tech 26:E248–E253. https://doi.org/10.1097/BSD.0b013e318288ac39

    Article  PubMed  Google Scholar 

  9. Baluch DA, Patel AA, Lullo B et al (2014) Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine (Phila Pa 1976) 39(22):E1297–E1302. https://doi.org/10.1097/BRS.0000000000000553

    Article  Google Scholar 

  10. Matsukawa K, Yato Y, Imabayashi H et al (2016) Biomechanical evaluation of fixation strength among different sizes of pedicle screws using the cortical bone trajectory: what is the ideal screw size for optimal fixation? Acta Neurochir (Wien) 158:465–471. https://doi.org/10.1007/s00701-016-2705-8

    Article  Google Scholar 

  11. Kaye ID, Prasad SK, Vaccaro AR, Hilibrand AS (2017) The cortical bone trajectory for pedicle screw insertion. JBJS Rev 5:e13. https://doi.org/10.2106/JBJS.RVW.16.00120

    Article  PubMed  Google Scholar 

  12. Karami KJ, Buckenmeyer LE, Kiapour AM et al (2015) Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech 28:E133–E139. https://doi.org/10.1097/BSD.0000000000000178

    Article  PubMed  Google Scholar 

  13. Shibasaki Y, Tsutsui S, Yamamoto E et al (2020) A bicortical pedicle screw in the caudad trajectory is the best option for the fixation of an osteoporotic vertebra: an in-vitro experimental study using synthetic lumbar osteoporotic bone models. Clin Biomech 72:150–154. https://doi.org/10.1016/j.clinbiomech.2019.12.013

    Article  Google Scholar 

  14. Zindrick MR, Wiltse LL, Widell EH et al (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-198602000-00012

    Article  PubMed  Google Scholar 

  15. Ponnusamy KE, Iyer S, Gupta G, Khanna AJ (2011) Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J 11:54–63. https://doi.org/10.1016/J.SPINEE.2010.09.024

    Article  PubMed  Google Scholar 

  16. Breeze SW, Doherty BJ, Noble PS et al (1998) A biomechanical study of anterior thoracolumbar screw fixation. Spine 23(17):1829–1831. https://doi.org/10.1097/00007632-199809010-00004

    Article  CAS  PubMed  Google Scholar 

  17. Heller JG, Estes BT, Zaouali M, Diop A (1996) Biomechanical study of screws in the lateral masses: variables affecting pull-out resistance. J Bone Joint Surg Am 78:1315–1321. https://doi.org/10.2106/00004623-199609000-00004

    Article  CAS  PubMed  Google Scholar 

  18. Muffoletto AJ, Yang J, Vadhva M, Hadjipavlou AG (2003) Cervical stability with lateral mass plating: Unicortical versus bicortical screw purchase. Spine (Phila Pa 1976) 28(8):778–781. https://doi.org/10.1097/00007632-200304150-00009

    Article  Google Scholar 

  19. Schreiber JJ, Anderson PA, Rosas HG et al (2011) Hounsfield units for assessing bone mineral density and strength: a tool for osteoporosis management. J Bone Jt Surg-Am 93:1057–1063. https://doi.org/10.2106/JBJS.J.00160

    Article  Google Scholar 

  20. Zdeblick TA, Kunz DN, Cooke ME, McCabe R (1993) Pedicle screw pullout strength. Spine (Phila Pa 1976) 18(12):1673–1676. https://doi.org/10.1097/00007632-199309000-00016

    Article  CAS  Google Scholar 

  21. Myers BS, Belmont PJ, Richardson WJ et al (1996) The role of imaging and in situ biomechanical testing in assessing pedicle screw pull-out strength. Spine (Phila Pa 1976) 21(17):1962–8. https://doi.org/10.1097/00007632-199609010-00004

    Article  CAS  Google Scholar 

  22. Luk KDK, Chen L, Lu WW (2005) A stronger bicortical sacral pedicle screw fixation through the S1 endplate. Spine (Phila Pa 1976) 30(5):525–529. https://doi.org/10.1097/01.brs.0000154649.55589.bf

    Article  Google Scholar 

  23. Pfeiffer M, Gilbertson LG, Goel VK et al (1996) Effect of specimen fixation method on pullout tests of pedicle screws. Spine (Phila Pa 1976) 21(9):1037–1044. https://doi.org/10.1097/00007632-199605010-00009

    Article  CAS  Google Scholar 

  24. Liebsch C, Zimmermann J, Graf N et al (2018) In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. J Mech Behav Biomed Mater 77:578–585. https://doi.org/10.1016/J.JMBBM.2017.10.030

    Article  PubMed  Google Scholar 

  25. Koranyi E, Bowman CE, Knecht CD (1970) Janssen M Holding power of orthopedic screws in bone. Clin Orthop Relat Res. https://doi.org/10.1097/00003086-197009000-00037

    Article  PubMed  Google Scholar 

  26. Bergmann G (2008) OrthoLoad. https://orthoload.com/. Accessed 23 Jan 2021

  27. (2015) ASTM F1717 - 15 Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model. In: AST International, West Conshohocken, PA. https://www.astm.org/DATABASE.CART/HISTORICAL/F1717-15.htm. Accessed 28 Dec 2019

  28. Sandén B, Olerud C, Petrén-Mallmin M et al (2004) The significance of radiolucent zones surrounding pedicle screws. J Bone Joint Surg Br 86-B(3):457–461. https://doi.org/10.1302/0301-620X.86B3.14323

    Article  Google Scholar 

  29. DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976). https://doi.org/10.1097/01.brs.0000236893.65878.39

    Article  Google Scholar 

  30. Pepke W, Wantia C, Almansour H et al (2019) Komplikationen im zeitlichen Verlauf nach einer operativen Wirbelsäulenversorgung. Orthopade. https://doi.org/10.1007/s00132-019-03770-1

    Article  Google Scholar 

  31. Matsukawa K, Yato Y, Kato T et al (2014) In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine (Phila Pa 1976) 39(4):E240–E245. https://doi.org/10.1097/BRS.0000000000000116

    Article  Google Scholar 

  32. Parker SL, Amin AG, Santiago-Dieppa D et al (2014) Incidence and clinical significance of vascular encroachment resulting from freehand placement of pedicle screws in the thoracic and lumbar spine. Spine (Phila Pa 1976) 39(8):683–687. https://doi.org/10.1097/BRS.0000000000000221

    Article  Google Scholar 

  33. Liu L, Wang H, Wang J et al (2019) The methods for inserting lumbar bicortical pedicle screws from the anatomical perspective of the prevertebral great vessels. BMC Musculoskelet Disord 20:380. https://doi.org/10.1186/s12891-019-2756-0

    Article  PubMed  PubMed Central  Google Scholar 

  34. Blocher M, Mayer M, Resch H, Ortmaier R (2015) Leriche-like syndrome as a delayed complication following posterior instrumentation of a traumatic l1 fracture: a case report and literature review. Spine (Phila Pa 1976) 40(22):E1195-7. https://doi.org/10.1097/BRS.0000000000001057

    Article  Google Scholar 

  35. Watanabe K, Yamazaki A, Hirano T et al (2010) Descending aortic injury by a thoracic pedicle screw during posterior reconstructive surgery: a case report. Spine (Phila Pa 1976) 35(20):E1064-8. https://doi.org/10.1097/BRS.0b013e3181ed29c1

    Article  Google Scholar 

  36. Lehman RA, Kuklo TR, Belmont PJ et al (2002) Advantage of pedicle screw fixation directed into the apex of the sacral promontory over bicortical fixation. Spine (Phila Pa 1976) 27(8):806–811. https://doi.org/10.1097/00007632-200204150-00006

    Article  Google Scholar 

  37. Matsukawa K, Yato Y, Kato T et al (2014) Cortical bone trajectory for lumbosacral fixation: penetrating S-1 endplate screw technique. J Neurosurg Spine 21:203–209. https://doi.org/10.3171/2014.3.SPINE13665

    Article  PubMed  Google Scholar 

  38. Sterba W, Kim DG, Fyhrie DP et al (2007) Biomechanical analysis of differing pedicle screw insertion angles. Clin Biomech 22:385–391. https://doi.org/10.1016/j.clinbiomech.2006.11.007

    Article  Google Scholar 

  39. Matsukawa K, Yato Y, Imabayashi H et al (2015) Biomechanical evaluation of the fixation strength of lumbar pedicle screws using cortical bone trajectory: a finite element study. J Neurosurg Spine 23:471–478. https://doi.org/10.3171/2015.1.SPINE141103

    Article  PubMed  Google Scholar 

  40. Garner HW, Paturzo MM, Gaudier G et al (2017) Variation in attenuation in L1 trabecular bone at different tube voltages: caution is warranted when screening for osteoporosis with the use of opportunistic CT. AJR 208:165–170. https://doi.org/10.2214/AJR.16.16744

    Article  PubMed  Google Scholar 

  41. Pickhardt PJ, Lee LJ, Muñoz Del Rio A et al (2011) Simultaneous screening for osteoporosis at CT colonography: bone mineral density assessment using MDCT attenuation techniques compared with the DXA reference standard. J Bone Miner Res 26:2194–2203. https://doi.org/10.1002/jbmr.428

    Article  PubMed  Google Scholar 

  42. Stemper BD, Yoganandan N, Baisden JL et al (2015) Rate-dependent fracture characteristics of lumbar vertebral bodies. J Mech Behav Biomed Mater 41:271–279. https://doi.org/10.1016/j.jmbbm.2014.07.035

    Article  PubMed  Google Scholar 

  43. Pilcher A, Wang X, Kaltz Z et al (2010) High strain rate testing of bovine trabecular bone. J Biomech Eng. https://doi.org/10.1115/1.4000086

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the contribution of Beda Rutishauser and Eleonora Croci for their support with the mechanical test set-up. They also thank Natalie Hinterholzer and Daniel Nanz from the Swiss Center for Musculoskeletal Imaging (SCMI) for their technical support during radiological imaging.

Funding

The vertebra-specific drill guides and the pedicle screws were provided to us by MySpine, Medacta SA International, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Spirig.

Ethics declarations

Conflict of interest

Author Prof. Mazda Farshad owns stocks at PrognoSyst AG and Incremed AG. He further receives research support from Medacta SA International and fellowship support from Johnson and Johnson. All other authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained by the local authorities.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spirig, J.M., Winkler, E., Cornaz, F. et al. Biomechanical performance of bicortical versus pericortical bone trajectory (CBT) pedicle screws. Eur Spine J 30, 2292–2300 (2021). https://doi.org/10.1007/s00586-021-06878-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-021-06878-1

Keywords

Navigation