Skip to main content
Log in

Radiological severity of hip osteoarthritis in patients with adult spinal deformity: the effect on spinopelvic and lower extremity compensatory mechanisms

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Sagittal spinal deformity (SSD) patients utilize pelvic tilt (PT) and their lower extremities in order to compensate for malalignment. This study examines the effect of hip osteoarthritis (OA) on compensatory mechanisms in SSD patients.

Methods

Patients ≥ 18 years with SSD were included for analysis. Spinopelvic, lower extremity, and cervical alignment were assessed on standing full-body stereoradiographs. Hip OA severity was graded by Kellgren–Lawrence scale (0–4). Patients were categorized as limited osteoarthritis (LOA: grade 0–2) and severe osteoarthritis (SOA: grade 3–4). Patients were matched for age and T1-pelvic angle (TPA). Spinopelvic [sagittal vertical axis (SVA), T1-pelvic angle, thoracic kyphosis (TK), pelvic tilt (PT), lumbar lordosis (LL), pelvic incidence minus lumbar lordosis (PI-LL), T1-spinopelvic inclination (T1SPi)] and lower extremity parameters [sacrofemoral angle, knee angle, ankle angle, posterior pelvic shift (P. Shift), global sagittal axis (GSA)] were compared between groups using independent sample t test.

Results

136 patients (LOA = 68, SOA = 68) were included in the study. SOA had less pelvic tilt (p = 0.011), thoracic kyphosis (p = 0.007), and higher SVA and T1Spi (p < 0.001) than LOA. SOA had lower sacrofemoral angle (p < 0.001) and ankle angle (p = 0.043), increased P. Shift (p < 0.001) and increased GSA (p < 0.001) compared to LOA. There were no differences in PI-LL, LL, knee angle, or cervical alignment (p > 0.05).

Conclusions

Patients with coexisting spinal malalignment and SOA compensate by pelvic shift and thoracic hypokyphosis rather than PT, likely as a result of limited hip extension secondary to SOA. As a result, SOA had worse global sagittal alignment than their LOA counterparts.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AA:

Ankle angle

AP:

Anterior–posterior

BMI:

Body mass index

GSA:

Global sagittal angle

KA:

Knee angle

LL:

Lumbar lordosis

LOA:

Limited osteoarthritis

OA:

Osteoarthritis

P. Shift:

Posterior pelvic shift

PI-LL:

Pelvic incidence-lumbar lordosis mismatch

PSM:

Propensity score matching

PT:

Pelvic tilt

SFA:

Sacrofemoral angle

SOA:

Severe osteoarthritis

SSF:

Sagittal spinal deformity

SVA:

Sagittal vertical axis

T1SPi:

T1-spinopelvic inclination

TK:

Thoracic kyphosis

TPA:

T1-pelvic angle

References

  1. Offierski C, Macnab I (1983) Hip-spine syndrome. Spine (Phila Pa 1976) 8(3):316–321

    Article  CAS  Google Scholar 

  2. Devin CJ, Mccullough KA, Morris BJ, Yates AJ, Kang JD (2012) Hip-spine syndrome. J Am Acad Orthop Surg 20(7):434–442. https://doi.org/10.5435/JAAOS-20-07-434

    Article  PubMed  Google Scholar 

  3. Barrey CCC, Roussouly P, Le Huec J-CC, D’Acunzi G, Perrin G (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841. https://doi.org/10.1007/s00586-013-3030-z

    Article  PubMed  Google Scholar 

  4. Ferrero E, Liabaud B, Challier V et al (2015) Role of pelvic translation and lower-extremity compensation to maintain gravity line position in spinal deformity. J Neurosurg Spine 24(3):1–11. https://doi.org/10.3171/2015.5.SPINE14989

    Article  Google Scholar 

  5. Barrey C, Roussouly P, Perrin G, Le Huec JC (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20:1–8. https://doi.org/10.1007/s00586-011-1930-3

    Article  Google Scholar 

  6. Smith JS, Shaffrey CI, Lafage V et al (2012) Spontaneous improvement of cervical alignment after correction of global sagittal balance following pedicle subtraction osteotomy. J Neurosurg Spine 17(4):300–307. https://doi.org/10.3171/2012.6.SPINE1250

    Article  PubMed  Google Scholar 

  7. Buckland AJ, Vira S, Oren JH et al (2016) When is compensation for lumbar spinal stenosis a clinical sagittal plane deformity? Spine J 16(8):1–11. https://doi.org/10.1016/j.spinee.2016.03.047

    Article  Google Scholar 

  8. Weng W-J, Wang W-J, Wu M, Xu Z-H, Xu L-L, Qiu Y (2015) Characteristics of sagittal spine–pelvis–leg alignment in patients with severe hip osteoarthritis. Eur Spine J 24:1228–1236. https://doi.org/10.1007/s00586-014-3700-5

    Article  PubMed  Google Scholar 

  9. Ferrero E, Vira S, Ames CP, Kebaish K (2016) Analysis of an unexplored group of sagittal deformity patients: low pelvic tilt despite positive sagittal malalignment. Eur Spine J 25:3568–3576. https://doi.org/10.1007/s00586-015-4048-1

    Article  PubMed  Google Scholar 

  10. Oh J, Smith J, Shaffrey C et al (2014) Sagittal spinopelvic malalignment in parkinson disease. Spine (Phila Pa 1976) 39(14):833–841. https://doi.org/10.1097/brs.0000000000000366

    Article  Google Scholar 

  11. Yoshimoto H, Sato S, Masuda T, Kanno T (2005) Spinopelvic alignment in patients with osteoarthrosis of the hip. Spine (Phila Pa 1976) 30(14):1650–1657

    Article  Google Scholar 

  12. Okuda T, Fujita T, Kaneuji A (2007) Stage-specific sagittal spinopelvic alignment changes in osteoarthritis of the hip secondary to developmental hip dysplasia. Spine (Phila Pa 1976) 32 (26):E816–E819

    Article  Google Scholar 

  13. Wade R, Yang H, Mckenna C (2013) A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J 22(2):296–304. https://doi.org/10.1007/s00586-012-2469-7

    Article  PubMed  Google Scholar 

  14. McKenna C, Wade R, Faria R et al (2012) EOS 2D/3D X-ray imaging system: a systematic review and economic evaluation. Health Technol Assess 16(14):1–188. https://doi.org/10.3310/hta16140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dubousset J, Charpak G, Dorion I et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189(2):287–297

    PubMed  Google Scholar 

  16. Horton WC, Brown CW, Bridwell KH, Glassman SD, Suk S-I, Cha CW (2005) Is there an optimal patient stance for obtaining a lateral 36″ radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976) 30(4):427–433. http://www.ncbi.nlm.nih.gov/pubmed/15706340

  17. Kellgren JH, Lawrence JS (1956) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16(4):494–502

    Article  Google Scholar 

  18. Report E, Reijman M, Hazes J et al (2004) Validity and reliability of three definitions of hip osteoarthritis: cross sectional and longitudinal approach. Ann Rheum Dis 63:1427–1433. https://doi.org/10.1136/ard.2003.016477

    Article  Google Scholar 

  19. Lafage R, Ferrero E, Henry JK et al (2015) Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 15(12):2493–2502. https://doi.org/10.1016/j.spinee.2015.08.067

    Article  PubMed  Google Scholar 

  20. Protopsaltis T, Schwab F, Bronsard N et al (2014) TheT1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Jt Surg Am 96(19):1631–1640. https://doi.org/10.2106/JBJS.M.01459

    Article  Google Scholar 

  21. Diebo BG, Oren JH, Challier V et al (2016) Global sagittal axis: a step toward full-body assessment of sagittal plane deformity in the human body. J Neurosurg Spine 25(October):494–499. https://doi.org/10.3171/2016.2.SPINE151311.494

    Article  PubMed  Google Scholar 

  22. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: SL Weinstein (ed) The pediatric spine: principles and practices, vol 1994. Raven Press, New York, pp 479–496. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Three-Dimensional+Analysis+of+the+Scoliotic+Deformity#0. Accessed 5 Dec 2014

  23. Glassman SD, Md Bridwell KM et al (2005) The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30(18):2024–2029. https://doi.org/10.1097/01.brs.0000179086.30449.96

    Article  Google Scholar 

  24. Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34(17):E599–E606. https://doi.org/10.1097/brs.0b013e3181aad219

    Article  Google Scholar 

  25. Yagi M, Ohne H, Konomi T et al (2017) Walking balance and compensatory gait mechanisms in surgically treated patients with adult spinal deformity. Spine J 17(3):409–417. https://doi.org/10.1016/j.spinee.2016.10.014

    Article  PubMed  Google Scholar 

  26. Lafage V, Schwab FJ, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33(14):1572–1578. https://doi.org/10.1097/brs.0b013e31817886a2

    Article  Google Scholar 

  27. Diebo BG, Ferrero E, Lafage R et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40(9):642–649. https://doi.org/10.1097/brs.0000000000000844

    Article  Google Scholar 

  28. Obeid I, Hauger O, Bourghli A, Pellet N, Vital J (2011) Global analysis of sagittal spinal alignment in major deformities: correlation between lack of lumbar lordosis and flexion of the knee. Eur Spine J 20(Suppl):S681–S685. https://doi.org/10.1007/s00586-011-1936-x

    Article  Google Scholar 

  29. Bendaya S, Lazennec JYY, Anglin C et al (2015) Healthy vs. osteoarthritic hips: a comparison of hip, pelvis and femoral parameters and relationships using the EOS® system. Clin Biomech (Bristol, Avon) 30(2):195–204. https://doi.org/10.1016/j.clinbiomech.2014.11.010

    Article  CAS  Google Scholar 

  30. Day LM, Ramchandran S, Jalai CM et al (2016) Thoracolumbar realignment surgery results in simultaneous reciprocal changes in lower extremities and cervical spine. Spine (Phila Pa 1976). https://doi.org/10.1097/brs.0000000000001928

    Article  Google Scholar 

  31. Radcliff KE, Orozco F, Molby N et al (2013) Change in spinal alignment after total hip arthroplasty. Orthop Surg 5(4):261–265. https://doi.org/10.1111/os.12076

    Article  PubMed  Google Scholar 

  32. Weng W, Wu H, Wu M, Zhu Y, Qiu Y (2016) The effect of total hip arthroplasty on sagittal spinal–pelvic–leg alignment and low back pain in patients with severe hip osteoarthritis. Eur Spine J. https://doi.org/10.1007/s00586-016-4444-1

    Article  PubMed  Google Scholar 

  33. Bredow J, Katinakis F, Schlüter-Brust K et al (2015) Influence of hip replacement on sagittal alignment of the lumbar spine: an EOS study. Technol Health Care 23(6):847–854. https://doi.org/10.3233/THC-151029

    Article  PubMed  CAS  Google Scholar 

  34. Blondel B, Parratte S, Tropiano P, Pauly V, Aubaniac J-M, Argenson J-N (2009) Pelvic tilt measurement before and after total hip arthroplasty. Orthop Traumatol Surg Res 95(8):568–572. https://doi.org/10.1016/j.otsr.2009.08.004

    Article  PubMed  CAS  Google Scholar 

  35. Murphy WS, Klingenstein G, Murphy SB, Zheng G (2013) Pelvic tilt is minimally changed by total hip arthroplasty hip. Clin Orthop Relat Res 471(2):417–421. https://doi.org/10.1007/s11999-012-2581-3

    Article  PubMed  Google Scholar 

  36. Piazzolla A, Solarino G, Bizzoca D et al (2017) Spinopelvic parameter changes and low back pain improvement due to femoral neck anteversion in patients with severe unilateral primary hip osteoarthritis undergoing total hip replacement. Eur Spine J. https://doi.org/10.1007/s00586-017-5033-7

    Article  PubMed  Google Scholar 

  37. Buckland AJ, Vigdorchik J, Schwab FJ et al (2015) Acetabular anteversion changes due to spinal deformity correction: bridging the gap between hip and spine surgeons. J Bone Jt Surg Am 97(23):1913–1920. https://doi.org/10.2106/JBJS.O.00276

    Article  Google Scholar 

  38. Masquefa T, Verdier N, Gille O et al (2015) Change in acetabular version after lumbar pedicle subtraction osteotomy to correct post-operative flat back: EOS® measurements of 38 acetabula. Orthop Traumatol Surg Res 101(6):655–659. https://doi.org/10.1016/j.otsr.2015.07.013

    Article  PubMed  CAS  Google Scholar 

  39. DelSole EM, Vigdorchik JM, Schwarzkopf R, Errico TJ, Buckland AJ (2016) Total hip arthroplasty in the spinal deformity population: does degree of sagittal deformity affect rates of safe zone placement, instability, or revision? J Arthroplast. https://doi.org/10.1016/j.arth.2016.12.039

    Article  Google Scholar 

  40. Riddle DL, Jiranek WA, Hull JR (2013) Validity and reliability of radiographic knee osteoarthritis measures by arthroplasty surgeons. Orthopedics 36(1):e25–e32. https://doi.org/10.3928/01477447-20121217-14

    Article  PubMed  Google Scholar 

  41. Ochi H, Homma Y, Baba T, Nojiri H, Matsumoto M, Kaneko K (2017) Sagittal spinopelvic alignment predicts hip function after total hip arthroplasty. Gait Posture 52:293–300. https://doi.org/10.1016/j.gaitpost.2016.12.010

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Buckland.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Research performed at Hospital for Joint Diseases, NYU Langone Medical Center, New York, NY.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Day, L.M., DelSole, E.M., Beaubrun, B.M. et al. Radiological severity of hip osteoarthritis in patients with adult spinal deformity: the effect on spinopelvic and lower extremity compensatory mechanisms. Eur Spine J 27, 2294–2302 (2018). https://doi.org/10.1007/s00586-018-5509-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-018-5509-0

Keywords

Navigation