Skip to main content

Advertisement

Log in

Creation of an ovine model of progressive structural lordo-scoliosis using a unilateral laminar tether

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To characterise changes in vertebral dimension in an ovine model of scoliosis and determine whether a reproducible curvature could be created that would be suitable for future testing of curve modifying surgical implants.

Methods

At a mean age of 5 weeks, 28 Scottish blackface sheep were anaesthetised. A 4 mm braided synthetic tape was laid under the left lamina of T5 and L1 and tightened to ‘hand’ tension. A scoliosis was then created by binding the six lowest ribs on the same side just distal to their rib angles and resecting a segment from each of the opposite ribs. Radiographs were taken at 4 weekly intervals, and CT images at 2, 5 and 7 months post tethering, to determine multi-planar curve progression. 20 animals were assessed at age 3 months, 12 at 41 weeks and 10 at 1 year with comparisons to five control animals.

Results

A significant bi-planar deformity was produced in all animals (scoliosis 32 ± 13º and lordosis 53 ± 21º 2 months post tethering; mean ± SD, n = 22). During the next 5 months the scoliosis decreased slightly (p = 0.08) but the sagittal deformity remained static: 21 ± 18° and 53 ± 19°, respectively (n = 12). The values at 7 months were associated with a mean 6 ± 4º rotational deformity. There was approximately twice as much growth in the right anterior aspects of the apical vertebrae as in the left posterior.

Conclusions

With appropriate care it was possible to obtain a reproducible curvature in immature sheep. The methods described are suitable for use in studies of growth modulation and other spinal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Thompson GH, Lenke LG, Akbarnia BA et al (2007) Early onset scoliosis: future directions. J Bone Joint Surg 89A(Supp I):163–166 (the immature spine)

    Article  Google Scholar 

  2. Newton PO, Fricka KB, Lee SS, Farnsworth CL, Tyler GC, Mahar AT (2002) Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine 27(7):689–693

    Article  PubMed  Google Scholar 

  3. Braun JT, Ogilvie JW, Akyuz E, Brodke DS, Bachus KN, Stefko RM (2003) Experimental scoliosis in an immature goat model: a method that creates idiopathic-type deformity with minimal violation of the spinal elements along the curve. Spine 28:2198–2203

    Article  PubMed  Google Scholar 

  4. Braun JT, Ogilivie JW, Akyuz E, Brodke DS, Bachus KN (2006) Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether. Spine 31:1410–1414

    Article  PubMed  Google Scholar 

  5. Braun JT, Hoffman M, Akyuz E, Ogilvie JW, Brodke DS, Bachus KN (2006) Mechanical modulation of vertebral growth in the fusionless treatment of progressive scoliosis in an experimental model. Spine 31:1314–1320

    Article  PubMed  Google Scholar 

  6. Braun JT, Akyuz E, Udall H, Ogilvie JW, Brodke DS, Bachus KN (2006) Three- dimensional analysis of 2 fusionless scoliosis treatments: a flexible ligament tether versus a rigid-shape memory alloy staple. Spine 31:262–268

    Article  PubMed  Google Scholar 

  7. Schwab F, Patel A, Lafage V, Farcy J-P (2009) A porcine model for progressive thoracic scoliosis. Spine 34(11):E397–E404

    Article  PubMed  Google Scholar 

  8. Patel A, Schwab F, Lafage V et al (2010) Computed tomographic validation of the porcine model for thoracic scoliosis. Spine 35(1):18–25

    Article  PubMed  Google Scholar 

  9. Patel A, Schwab F, Lafage R et al (2011) Does removing the spinal tether in a porcine scoliosis model result in persistent deformity? A pilot study. Clin Orthop Relat Res 469(5):1368–1374

    Article  PubMed Central  PubMed  Google Scholar 

  10. Wilke HHJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines. Spine 22:2365–2374

    Article  CAS  PubMed  Google Scholar 

  11. Hasler C, Sprecher CM, Milz S (2010) Comparison of the immature sheep spine and the growing human spine: a spondylometric database for growth modulating research. Spine 35:E1262–E1272

    PubMed  Google Scholar 

  12. Searle TW, Graham MCC, Donnelly JB (1989) Change of skeletal dimensions during growth in sheep: the effect of nutrition. J Agric Sci 112:321–327

    Article  Google Scholar 

  13. Lam GC, Hill DL, Le LH, Raso JV, Lou EH (2008) Vertebral rotation measurement: a summary and comparison of common radiographic and CT methods. Scoliosis 3:16

    Article  PubMed Central  PubMed  Google Scholar 

  14. Aaro S, Dahlborn M (1981) Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer tomography. Spine 6(5):460–467

    Article  CAS  PubMed  Google Scholar 

  15. Newton PO, Upasani VV, Farnsworth CL, Oka R, Chambers RC, Dwek J et al (2008) Spinal growth modulation with use of a tether in an immature porcine model. J Bone Jt Surg Am 90:2695–2706

    Google Scholar 

  16. Schoenian S. Vaccinations for sheep and goats. http://www.sheepandgoat.com/articles/flockvaccinations.html

  17. Bania MA, Negrin JA (1995) Scintigraphic evidence of post-surgical rib regrowth. Clin Nucl Med 20(2):185–186

    Article  CAS  PubMed  Google Scholar 

  18. Hefti FL, McMaster MJ (1983) The effect of the adolescent growth spurt on early posterior spinal fusion in infantile and juvenile idiopathic scoliosis. J Bone Jt Surg-B 65:247–254

    CAS  Google Scholar 

  19. Ford DM, Bagnall KM, McFadden KD, Greenhill BJ, Raso VJP (1984) Paraspinal muscle imbalance in adolescent idiopathic scolioisis. Spine 9(4):373–376

    Article  CAS  PubMed  Google Scholar 

  20. Gibson JNA, McMaster MJ, Scrimgeour CM, Stoward PJ, Rennie MJ (1988) Rates of muscle protein synthesis in paraspinal muscles: lateral disparity in children with idiopathic scoliosis. Clin Sci 75:79–83

    CAS  PubMed  Google Scholar 

  21. Mannion AF, Meier M, Grob D, Muntener M (1998) Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur Spine J 7(4):289–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Castro FP (2003) Adolescent idiopathic scoliosis, bracing and the Hueter- Volkmann principle. Spine J 3(3):180–185

    Article  PubMed  Google Scholar 

  23. Andrew T, Piggott H (1985) Growth arrest for progressive scoliosis. J Bone Jt Surg 67(B):193–197

    CAS  Google Scholar 

  24. Fu G, Kawakami N, Goto M, Tsuji T, Ohara T, Imagama S (2009) Comparison of vertebral rotation corrected by different techniques and anchors in the surgical treatment of adolescent thoracic idiopathic scoliosis. J Spinal Dis 22(3):182–189

    Article  Google Scholar 

  25. Upadhyay SS, Mullaji AB, Luk KD et al (1995) Relation of spinal and thoracic cage deformities and their flexibilities with altered pulmonary functions in adolescent idiopathic scoliosis. Spine 20:2415–2420

    Article  CAS  PubMed  Google Scholar 

  26. Ecker ML, Betz RR, Trent PS et al (1988) Computer tomography evaluation of Cotrel-Dubousset instrumentation in idiopathic scoliosis. Spine 13:1141–1144

    Article  CAS  PubMed  Google Scholar 

  27. Wood KB, Transfeldt EE, Ogilvie JW, Schender MJ, Bradford DS (1991) Rotational changes of the vertebral-pelvic axis following Cotrel-Dubousset instrumentation. Spine 16(8 Suppl):S409–S413

    Article  Google Scholar 

  28. Villemure I, Aubin C-E, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine 26(20):2244–2250

    Article  CAS  PubMed  Google Scholar 

  29. Krismer M, Sterzinger W, Haid C, Frischhut B, Bauer R (1996) Axial rotation measurement of scoliotic vertebrae by means of computed tomography scans. Spine 21(5):576–581

    Article  CAS  PubMed  Google Scholar 

  30. Smit TH (2002) The use of a quadruped as an in vitro model for the study of the spine-biomechanical considerations. Eur Spine J 11:137–144

    Article  PubMed Central  PubMed  Google Scholar 

  31. Pedriolle R, Beccheti S, Vidal J, et al. (1992) Description de la cuneiformisation de la vertebre apicale. In: Proceedings of the international symposium on 3D scoliotic deformities. pp 244–249

  32. Aubin CE, Dansereau J, Petit Y et al (1997) Three-dimensional reconstruction of vertebral endplates for the study of scoliotic spine wedging. In: Sevastik JA, Diab KM (eds) Research into spinal deformities 1. IOS Press, Amsterdam

    Google Scholar 

  33. Parent S, Labelle H, Skalli W, DeGuise J (2004) Vertebral wedging characteristic changes in scoliotic spines. Spine 29:E455–E462

    Article  PubMed  Google Scholar 

  34. Stokes IF, Aronsson D (2001) Disc and vertebral wedging in patients with progressive scoliosis. J Spinal Disord 14:317–322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Grant funding was received from The Medical Research Council, UK. Special thanks are due to Joan Docherty at the University of Edinburgh for laboratory assistance and to Eddie Channon at Chirostat Consulting, Nottingham.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Alastair Gibson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burke, J.G., Vettorato, E., Schöffmann, G. et al. Creation of an ovine model of progressive structural lordo-scoliosis using a unilateral laminar tether. Eur Spine J 24, 1382–1390 (2015). https://doi.org/10.1007/s00586-014-3609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3609-z

Keywords

Navigation