Skip to main content
Log in

Is the 4 mm height of the vertebral artery groove really a limitation of C1 pedicle screw insertion?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

To explore the feasibility and effectiveness of C1 pedicle screw fixation in patients whose atlas vertebral artery groove (defined as the C1 pedicle) height is less than 4 mm, but with a medullary canal.

Methods

From January 2010 to January 2013, 7 patients (6 males, 1 female) with atlantoaxial instability whose C1 pedicle height was less than 4.0 mm on one or both sides were treated by C1 pedicle screw fixation at our institution. Thirteen of the 14 C1 pedicles were less than 4.0 mm in height, but all had a medullary canal. Patients were followed up at regular intervals. Postoperative computed tomography (CT) scans were performed to assess if C1 pedicle screw placement was successful. Clinical outcomes were evaluated according to postoperative complications, the American Spinal Injury Association grading system, and bone graft status.

Results

Thirteen C1 pedicles with a height less than 4.0 mm were inserted by 13 3.5- or 4.0-mm-diameter pedicle screws, and one C1 pedicle whose height was 4.1 mm was inserted by a 4.0-mm-diameter pedicle screw. In addition, 14 pedicle screws were inserted in the axis. The mean follow-up period was 23 (range 8–38) months. No neurologic or vascular complications occurred in any of the seven patients. Postoperative CT three-dimensional reconstruction images showed that all 14 pedicle screws were inserted in the C1 pedicles without destruction of the atlas pedicle cortical bone. All patients demonstrated bony fusion 6 months postoperatively.

Conclusion

If there is a medullary canal in the C1 pedicle, a 3.5- or 4.0-mm-diameter pedicle screw can be safely inserted into the atlas and C1 pedicle screw fixation can be performed without any impact on fixation stability and clinical efficacy, even if the C1 pedicle height is less than 4.0 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Elliott RE, Tanweer O, Smith ML, Frempong-Boadu A (2013) Impact of starting point and bicortical purchase of C1 lateral mass screws on atlantoaxial fusion: meta-analysis and review of the literature. J Spinal Disord Tech. doi:10.1097/BSD.0b013e31828ffc97

    Google Scholar 

  2. Ma XY, Yin QS, Wu ZH, Xia H, Liu JF, Xiang M, Zhao WD, Zhong SZ (2009) C1 pedicle screws versus C1 lateral mass screws: comparisons of pullout strengths and biomechanical stabilities. Spine (Phila Pa 1976) 34:371–377. doi:10.1097/BRS.0b013e318193a21b

    Article  Google Scholar 

  3. Tan M, Wang H, Wang Y, Zhang G, Yi P, Li Z, Wei H, Yang F (2003) Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass. Spine (Phila Pa 1976) 28:888–895. doi:10.1097/01.BRS.0000058719.48596.CC

    Google Scholar 

  4. Yeom JS, Kafle D, Nguyen NQ, Noh W, Park KW, Chang BS, Lee CK, Riew KD (2012) Routine insertion of the lateral mass screw via the posterior arch for C1 fixation: feasibility and related complications. Spine J 12:476–483. doi:10.1016/j.spinee.2012.06.010

    Article  PubMed  Google Scholar 

  5. Resnick DK, Benzel EC (2002) C1–C2 pedicle screw fixation with rigid cantilever beam construct: case report and technical note. Neurosurgery 50:426–428

    PubMed  Google Scholar 

  6. Ma XY, Yin QS, Wu ZH, Xia H, Liu JF, Zhong SZ (2005) Anatomic considerations for the pedicle screw placement in the first cervical vertebra. Spine (Phila Pa 1976) 30:1519–1523

    Article  Google Scholar 

  7. Christensen DM, Eastlack RK, Lynch JJ, Yaszemski MJ, Currier BL (2007) C1 anatomy and dimensions relative to lateral mass screw placement. Spine (Phila Pa 1976) 32:844–848. doi:10.1097/01.brs.0000259833.02179.c0

    Article  Google Scholar 

  8. Lin JM, Hipp JA, Reitman CA (2013) C1 lateral mass screw placement via the posterior arch: a technique comparison and anatomic analysis. Spine J. doi:10.1016/j.spinee.2013.06.006

    Google Scholar 

  9. Kim JH, Kwak DS, Han SH, Cho SM, You SH, Kim MK (2013) Anatomic consideration of the C1 laminar arch for lateral mass screw fixation via C1 lateral lamina: a landmark between the lateral and posterior lamina of the C1. J Korean Neurosurg Soc 54:25–29. doi:10.3340/jkns.2013.54.1.25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Gebauer M, Barvencik F, Briem D, Kolb JP, Seitz S, Rueger JM, Puschel K, Amling M (2010) Evaluation of anatomic landmarks and safe zones for screw placement in the atlas via the posterior arch. Eur Spine J 19:85–90. doi:10.1007/s00586-009-1181-8

    Article  PubMed Central  PubMed  Google Scholar 

  11. Blagg SE, Don AS, Robertson PA (2009) Anatomic determination of optimal entry point and direction for C1 lateral mass screw placement. J Spinal Disord Tech 22:233–239. doi:10.1097/BSD.0b013e31817ff95a

    Article  PubMed  Google Scholar 

  12. Lee MJ, Cassinelli E, Riew KD (2006) The feasibility of inserting atlas lateral mass screws via the posterior arch. Spine (Phila Pa 1976) 31:2798–2801. doi:10.1097/01.brs.0000245902.93084.12

    Article  Google Scholar 

  13. Qian LX, Hao DJ, He BR, Jiang YH (2013) Morphology of the atlas pedicle revisited: a morphometric CT-based study on 120 patients. Eur Spine J 22:1142–1146. doi:10.1007/s00586-013-2662-3

    Article  PubMed  Google Scholar 

  14. Wang J, Xia H, Ying Q, Lu Y, Wu Z, Ai F, Ma X (2013) An anatomic consideration of C2 vertebrae artery groove variation for individual screw implantation in axis. Eur Spine J 22:1547–1552. doi:10.1007/s00586-013-2779-4

    Article  PubMed Central  PubMed  Google Scholar 

  15. Goel A, Laheri V (1994) Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir (Wien) 129:47–53

    Article  CAS  Google Scholar 

  16. Harms J, Melcher RP (2001) Posterior C1–C2 fusion with polyaxial screw and rod fixation. Spine (Phila Pa 1976) 26:2467–2471

    Article  CAS  Google Scholar 

  17. Geck MJ, Truumees E, Hawthorne D, Singh D, Stokes JK, Flynn A (2013) Feasibility of rigid upper cervical instrumentation in children: tomographic analysis of children aged 2–6. J Spinal Disord Tech. doi:10.1097/BSD.0b013e318291ce46

    PubMed  Google Scholar 

  18. Padua MR, Yeom JS, Em HT, Kim HJ, Chang BS, Lee CK, Riew KD (2013) Feasibility of laminar screw placement in the upper thoracic spine: analysis using 3-dimensional computed tomographic simulation. Spine (Phila Pa 1976) 38:1146–1153. doi:10.1097/BRS.0b013e31828aadf5

    Article  Google Scholar 

  19. Sjostrom L, Jacobsson O, Karlstrom G, Pech P, Rauschning W (1993) CT analysis of pedicles and screw tracts after implant removal in thoracolumbar fractures. J Spinal Disord 6:225–231

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grants No. 81071486).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Jun Hao.

Additional information

D.-J. Hao and B.-R. He contributed equally to this work and should be considered as co-corresponding authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, DG., He, SM., Pan, JW. et al. Is the 4 mm height of the vertebral artery groove really a limitation of C1 pedicle screw insertion?. Eur Spine J 23, 1109–1114 (2014). https://doi.org/10.1007/s00586-014-3217-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-014-3217-y

Keywords

Navigation