Skip to main content
Log in

The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo

European Spine Journal Aims and scope Submit manuscript

Abstract

The aetiology of osteoporotic vertebral fractures is multi-factorial, and cannot be explained solely by low bone mass. After sustaining an initial vertebral fracture, the risk of subsequent fracture increases greatly. Examination of physiologic loads imposed on vertebral bodies may help to explain a mechanism underlying this fracture cascade. This study tested the hypothesis that model-derived segmental vertebral loading is greater in individuals who have sustained an osteoporotic vertebral fracture compared to those with osteoporosis and no history of fracture. Flexion moments, and compression and shear loads were calculated from T2 to L5 in 12 participants with fractures (66.4 ± 6.4 years, 162.2 ± 5.1 cm, 69.1 ± 11.2 kg) and 19 without fractures (62.9 ± 7.9 years, 158.3 ± 4.4 cm, 59.3 ± 8.9 kg) while standing. Static analysis was used to solve gravitational loads while muscle-derived forces were calculated using a detailed trunk muscle model driven by optimization with a cost function set to minimise muscle fatigue. Least squares regression was used to derive polynomial functions to describe normalised load profiles. Regression co-efficients were compared between groups to examine differences in loading profiles. Loading at the fractured level, and at one level above and below, were also compared between groups. The fracture group had significantly greater normalised compression (= 0.0008) and shear force (< 0.0001) profiles and a trend for a greater flexion moment profile. At the level of fracture, a significantly greater flexion moment (= 0.001) and shear force (< 0.001) was observed in the fracture group. A greater flexion moment (= 0.003) and compression force (= 0.007) one level below the fracture, and a greater flexion moment (= 0.002) and shear force (= 0.002) one level above the fracture was observed in the fracture group. The differences observed in multi-level spinal loading between the groups may explain a mechanism for increased risk of subsequent vertebral fractures. Interventions aimed at restoring vertebral morphology or reduce thoracic curvature may assist in normalising spine load profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaron JE, Shore PA, Shore RC et al (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture II. Three-dimensional histology. Bone 27:277–82

    Article  PubMed  CAS  Google Scholar 

  2. Alexeeva L, Burckhardt P, Christiansen C et al (1994) Report of a World Health Organization study group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO, Geneva

  3. Black DM, Arden NK, Palermo L et al (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of osteoporotic fractures research group. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  4. Briggs A, Wark J, Phillips B et al (2005) Subregional bone mineral density characteristics in the lumbar spine: an in vivo pilot study using dual energy X-ray absorptiometry. Annual scientific meeting of the Australian and New Zealand bone and mineral society, Perth, Australia, 7–9 September 2005

  5. Briggs AM, Greig AM, Wark JD et al (2004) A review of anatomical and mechanical factors affecting vertebral body integrity. Int J Med Sci 1:170–180

    PubMed  Google Scholar 

  6. Briggs AM, Tully EA, Adams PE et al (2005) Vertebral centroid and Cobb angle measures of thoracic kyphosis. Intern Med J 35:A96

    Google Scholar 

  7. Briggs AM, Wark JD, Kantor S et al (2006) Bone mineral density distribution in thoracic and lumbar vertebrae: an ex vivo study using dual energy X-ray absorptiometry. Bone 38:286–288

    Article  PubMed  Google Scholar 

  8. Bürklein D, Lochmuller EM, Kuhn V et al (2001) Correlation of thoracic and lumbar vertebral failure loads with in situ vs. ex situ dual energy X-ray absorptiometry. J Biomech 34:579–587

    Article  PubMed  Google Scholar 

  9. Crowninshield RD, Brand RA (1981) A physiologically based criterion of muscle force prediction in locomotion. J Biomech 14:793–801

    Article  PubMed  CAS  Google Scholar 

  10. Dieën JHv (1997) Are recruitment patterns of the trunk musculature compatible with a synergy based on maximization of endurance? J Biomech 30:1095–1100

    Article  Google Scholar 

  11. Dieën JHv, Kingma I (2005) Effects of antagonistic co-contraction on differences between electromyography based and optimization based estimates of spinal forces. Ergonomics 48:411–426

    Google Scholar 

  12. Dublin AB, Hartman J, Latchaw RE et al (2005) The vertebral body fracture in osteoporosis: restoration of height using percutaneous vertebroplasty. Am J Neuroradiol 26:489–492

    PubMed  Google Scholar 

  13. Duval-Beaupere G, Robain G (1987) Visualization of full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measured in vivo. Int Orthop 11:261–269

    Article  PubMed  CAS  Google Scholar 

  14. Ebbesen EN, Thomsen JS, Beck-Nielsen H et al (1999) Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone 25:713–724

    Article  PubMed  CAS  Google Scholar 

  15. Eckstein F, Fischbeck M, Kuhn V et al (2004) Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 35:364–374

    Article  PubMed  Google Scholar 

  16. Edmondston SJ, Singer KP, Day RE et al (1994) In-vitro relationships between vertebral body density, size, and compressive strength in the elderly thoracolumbar spine. Clin Biomech 9:180–186

    Article  Google Scholar 

  17. Edmondston SJ, Singer KP, Day RE et al (1997) Ex vivo estimation of thoracolumbar vertebral body compressive strength: the relative contributions of bone densitometry and vertebral morphometry. Osteoporos Int 7:142–148

    Article  PubMed  CAS  Google Scholar 

  18. El-Rich M, Shirazi-Adl A, Arjmand N (2004) Muscle activity, internal loads, and stability of the human spine in standing postures: combined model and in vivo studies. Spine 29:2633–2642

    Article  PubMed  Google Scholar 

  19. Farooq N, Park JC, Pollintine P et al (2005) Can vertebroplasty restore normal load-bearing to fractured vertebrae? Spine 30:1723–1730

    Article  PubMed  Google Scholar 

  20. Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27:1–11

    Article  PubMed  Google Scholar 

  21. Ford CM, Keaveny TM (1996) The dependence of shear failure properties of trabecular bone on apparent density and trabecular orientation. J Biomech 29:1309–1317

    Article  PubMed  CAS  Google Scholar 

  22. Gardner-Morse MG, Laible JP, Stokes IAF (1990) Incorporation of spinal flexibility measurements into finite element analysis. J Biomech Eng 112:481–483

    PubMed  CAS  Google Scholar 

  23. Genant HK, Jergas M (2003) Assessment of prevalent and incident vertebral fractures in osteoporosis research. Osteoporos Int 14:S43–S55

    Article  PubMed  Google Scholar 

  24. Gilsanz V, Loro LM, Roe TF et al (1995) Vertebral size in elderly women with osteoporosis: mechanical implications and relationships to fractures. J Clin Invest 95:2332–2337

    Article  PubMed  CAS  Google Scholar 

  25. Goh S, Price RI, Leedman PJ et al (2000) A comparison of three methods for measuring thoracic kyphosis: implications for clinical studies. Rheumatology 39:310–315

    Article  PubMed  CAS  Google Scholar 

  26. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Article  PubMed  CAS  Google Scholar 

  27. Harrison DE, Cailliet R, Harrison DD et al (2001) Reliability of centroid, Cobb, and Harrison posterior tangent methods: which to choose for analysis of thoracic kyphosis. Spine 26:E227–E234

    Article  PubMed  CAS  Google Scholar 

  28. Hedlund LR, Gallagher JC, Meeger C et al (1989) Change in vertebral shape in spinal osteoporosis. Calcif Tissue Int 44:168–172

    PubMed  CAS  Google Scholar 

  29. Homminga J, Van-Rietbergen B, Lochmuller EM et al (2004) The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent error loads. Bone 34:510–516

    Article  PubMed  CAS  Google Scholar 

  30. Huang MH, Barrett-Connor E, Greendale GA et al (2006) Hyperkyphotic posture and risk of future osteoporotic fractures: the Rancho Bernado study. J Bone Miner Res 21:419–423

    Article  PubMed  Google Scholar 

  31. Jensen RK, Fletcher P (1994) Distribution of mass to the segments of elderly males and females. J Biomech 27:89–96

    Article  PubMed  CAS  Google Scholar 

  32. Kanis JA (2002) Assessing the risk of vertebral osteoporosis. Singapore Med J 43:100–105

    PubMed  CAS  Google Scholar 

  33. Keaveny TM, Morgan EF, Niebur GL et al (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Article  PubMed  CAS  Google Scholar 

  34. Keller TS, Harrison DE, Colloca CJ et al (2003) Prediction of osteoporotic spinal deformity. Spine 28:455–462

    Article  PubMed  Google Scholar 

  35. Keller TS, Holm SH, Hansson TH et al (1990) The dependence of intervertebral disc mechanical properties on physiologic conditions. Spine 15:751–761

    Article  PubMed  CAS  Google Scholar 

  36. Klotzbuecher CM, Ross PD, Landsman PB et al (2000) Patients with prior fractures have an increased risk of future fractures: a summary of the literature and statistical synthesis. J Bone Miner Res 15:721–739

    Article  PubMed  CAS  Google Scholar 

  37. Kopperdahl DL, Pearlman JL, Keaveny TM (2000) Biomechanical consequences of an isolated overload on the human vertebral body. J Orthop Res 18:685–690

    Article  PubMed  CAS  Google Scholar 

  38. Lindsay R, Silverman SL, Cooper C et al (2001) Risk of new vertebral fracture in the year following a fracture. JAMA 285:320–323

    Article  PubMed  CAS  Google Scholar 

  39. McCloskey EV, Spector TD, Eyres KS et al (1993) The assessment of vertebral deformity: a method for use in population studies and clinical trials. Osteoporos Int 3:138–147

    Article  PubMed  CAS  Google Scholar 

  40. Motulsky H, Christopoulos A (2003) Fitting models to biological data using linear and non-linear regression: a practical guide to curve fitting. GraphPad Software Inc., San Diego

    Google Scholar 

  41. Oleksik A, Ott SM, Vedi S et al (2000) Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res 15:1368–1375

    Article  PubMed  CAS  Google Scholar 

  42. Pearsall DJ, Reid JG, Livingston LA (1996) Segmental inertial parameters of the human trunk as determined from computed tomography. Ann Biomed Eng 24:198–210

    PubMed  CAS  Google Scholar 

  43. Rohlmann A, Bergmann G, Graichen F (1999) Loads on internal spinal fixators measured in different body positions. Eur Spine J 8:354–359

    Article  PubMed  CAS  Google Scholar 

  44. Ross PD, Davis JW, Epstein RS et al (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  45. Ross PD, Genant HK, Davis JW et al (1993) Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int 3:120–126

    Article  PubMed  CAS  Google Scholar 

  46. Simpson EK, Parkinson IH, Manthey B et al (2001) Intervertebral disc disorganisation is related to trabecular bone architecture in the lumbar spine. J Bone Miner Res 16:681–687

    Article  PubMed  CAS  Google Scholar 

  47. Singer K, Edmondston S, Day R et al (1995) Prediction of thoracic and lumbar vertebral body compressive strength. Correlations with bone mineral density and vertebral region. Bone 17:167–174

    Article  PubMed  CAS  Google Scholar 

  48. Stokes IAF, Gardner-Morse M (1999) Quantitative anatomy of the lumbar musculature. J Biomech 32:311–316

    Article  PubMed  CAS  Google Scholar 

  49. Winter DA (1990) Biomechanics and motor control of human movement, 2nd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of Associate Professor David Pearsall (McGill University, Canada) with providing additional trunk inertial data and the Medical Imaging department at St. Vincent’s Hospital, Melbourne, Australia.

Funding: seeding grant 013/05: Physiotherapy Research Foundation (Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Briggs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briggs, A.M., Wrigley, T.V., van Dieën, J.H. et al. The effect of osteoporotic vertebral fracture on predicted spinal loads in vivo. Eur Spine J 15, 1785–1795 (2006). https://doi.org/10.1007/s00586-006-0158-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0158-0

Keywords

Navigation