Skip to main content
Log in

Injury of the anterior longitudinal ligament during whiplash simulation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Anterior longitudinal ligament (ALL) injuries following whiplash have been documented both in vivo and in vitro; however, ALL strains during the whiplash trauma remain unknown. A new in vitro whiplash model and a bench-top trauma sled were used in an incremental trauma protocol to simulate whiplash at 3.5, 5, 6.5 and 8 g accelerations, and peak ALL strains were determined for each trauma. Following the final trauma, the ALLs were inspected and classified as uninjured, partially injured or completely injured. Peak strain, peak intervertebral extension and increases in flexibility parameters were compared among the three injury classification groups. Peak ALL strains were largest in the lower cervical spine, and increased with impact acceleration, reaching a maximum of 29.3% at C6-C7 at 8 g. Significant increases (P<0.05) over the physiological strain limits first occurred at C4-C5 during the 3.5 g trauma and spread to lower intervertebral levels as impact severity increased. The complete ligament injuries were associated with greater increases in ALL strain, intervertebral extension, and flexibility parameters than were observed at uninjured intervertebral levels (P<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barnsley L, Lord S, Bogduk N (1994) Whiplash injury. Pain 58:283–307

    CAS  PubMed  Google Scholar 

  2. Braakman R, Penning L (1971) Injuries of the cervical spine. Excerpta Medica, Amsterdam

  3. Bunketorp L, Nordholm L, Carlsson J (2002) A descriptive analysis of disorders in patients 17 years following motor vehicle accidents. Eur Spine J 11:227–234

    Article  CAS  PubMed  Google Scholar 

  4. Buonocore E, Hartman JT, Nelson CL (1966) Cineradiograms of cervical spine in diagnosis of soft-tissue injuries. JAMA 198:143–147

    Article  CAS  Google Scholar 

  5. Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS (1990) Discs degenerate before facets. Spine 15:111–113

    CAS  PubMed  Google Scholar 

  6. Cholewicki J, Panjabi MM, Nibu K, et al (1998) Head kinematics during in vitro whiplash simulation. Accid Anal Prev 30:469–479

    Article  CAS  PubMed  Google Scholar 

  7. Cusick JF, Pintar FA, Yoganandan N (2001) Whiplash syndrome: kinematic factors influencing pain patterns. Spine 26:1252–1258

    Article  CAS  PubMed  Google Scholar 

  8. Davis SJ, Teresi LM, Bradley WG Jr, Ziemba MA, Bloze AE (1991) Cervical spine hyperextension injuries: MR findings. Radiology 180:245–251

    CAS  PubMed  Google Scholar 

  9. Dunlop RB, Adams MA, Hutton WC (1984) Disc space narrowing and the lumbar facet joints. J Bone Joint Surg Br 66:706–710

    CAS  PubMed  Google Scholar 

  10. Dvorak J, Panjabi MM, Novotny JE, Antinnes JA (1991) In vivo flexion/extension of the normal cervical spine. J Orthop Res 9:828–834

    CAS  PubMed  Google Scholar 

  11. Fujiwara A, Tamai K, Yamato M, et al (1999) The relationship between facet joint osteoarthritis and disc degeneration of the lumbar spine: an MRI study. Eur Spine J 8:396–401

    Article  CAS  PubMed  Google Scholar 

  12. Grauer JN, Panjabi MM, Cholewicki J, Nibu K, Dvorak J (1997) Whiplash produces an S-shaped curvature of the neck with hyperextension at lower levels. Spine 22:2489–2494

    CAS  PubMed  Google Scholar 

  13. Hampton D, Laros G, McCarron R, Franks D (1989) Healing potential of the anulus fibrosus. Spine 14:398–401

    CAS  PubMed  Google Scholar 

  14. Herkowitz HN, Rothman RH (1984) Subacute instability of the cervical spine. Spine 9:348–357

    CAS  PubMed  Google Scholar 

  15. Ivancic PC, Panjabi M, Ito S, Cripton PA, Wang JL (2002) A biofidelic osteoligamentous cervical spine model with muscle force replication for whiplash trauma simulation. Proceedings of the Cervical Spine Research Society. Miami, December 5–7

  16. Jonsson H Jr, Bring G, Rauschning W, Sahlstedt B (1991) Hidden cervical spine injuries in traffic accident victims with skull fractures. J Spinal Disord 4:251–263

    PubMed  Google Scholar 

  17. Kaapa E, Han X, Holm S, et al (1995) Collagen synthesis and types I, III, IV, and VI collagens in an animal model of disc degeneration. Spine 20:59–66

    CAS  PubMed  Google Scholar 

  18. Kaneoka K, Ono K, Inami S, Yokoi N, Hayashi K (1997) Human cervical spine kinematics during whiplash loading. International Conference on New Frontiers in Biomechanical Engineering. Tokyo, Japan

  19. Kaneoka K, Ono K, Inami S, Hayashi K (1999) Motion analysis of cervical vertebrae during whiplash loading. Spine 24:763–769

    Article  CAS  PubMed  Google Scholar 

  20. Lind B, Sihlbom H, Nordwall A, Malchau H (1989) Normal range of motion of the cervical spine. Arch Phys Med Rehabil 70:692–695

    CAS  PubMed  Google Scholar 

  21. Lord SM, Barnsley L, Wallis BJ, Bogduk N (1996) Chronic cervical zygapophysial joint pain after whiplash. A placebo-controlled prevalence study. Spine 21:1737–1744

    Article  CAS  PubMed  Google Scholar 

  22. MacNab I (1964) Acceleration injuries of the cervical spine. J Bone Joint Surg Am 46:1797–1799

    CAS  PubMed  Google Scholar 

  23. Moore RJ, Crotti TN, Osti OL, Fraser RD, Vernon-Roberts B (1999) Osteoarthrosis of the facet joints resulting from anular rim lesions in sheep lumbar discs. Spine 24:519–525

    Article  CAS  PubMed  Google Scholar 

  24. Ordway NR, Seymour RJ, Donelson RG, Hojnowski LS, Edwards WT (1999) Cervical flexion, extension, protrusion, and retraction. A radiographic segmental analysis. Spine 24:240–247

    Article  CAS  PubMed  Google Scholar 

  25. Oxland TR, Panjabi MM, Southern EP, Duranceau JS (1991) An anatomic basis for spinal instability: a porcine trauma model. J Orthop Res 9:452–462

    CAS  PubMed  Google Scholar 

  26. Panjabi MM (1992) The stabilizing system of the spine. II. Neutral zone and instability hypothesis. J Spinal Disord 5:390–396

    PubMed  Google Scholar 

  27. Panjabi MM, White AA 3rd, Johnson RM (1975) Cervical spine mechanics as a function of transection of components. J Biomech 8:327–336

    CAS  PubMed  Google Scholar 

  28. Panjabi MM, Duranceau J, Goel V, Oxland T, Takata K (1991) Cervical human vertebrae. Quantitative three-dimensional anatomy of the middle and lower regions. Spine 16:861–869

    CAS  PubMed  Google Scholar 

  29. Panjabi MM, Oxland TR, Parks EH (1991) Quantitative anatomy of cervical spine ligaments. II. Middle and lower cervical spine. J Spinal Disord 4:277–285

    CAS  PubMed  Google Scholar 

  30. Panjabi MM, Oxland TR, Lin RM, McGowen TW (1994) Thoracolumbar burst fracture. A biomechanical investigation of its multidirectional flexibility. Spine 19:578–585

    CAS  PubMed  Google Scholar 

  31. Panjabi MM, Cholewicki J, Nibu K, Babat LB, Dvorak J (1998) Simulation of whiplash trauma using whole cervical spine specimens. Spine 23:17–24

    Article  CAS  PubMed  Google Scholar 

  32. Panjabi MM, Cholewicki J, Nibu K, et al (1998) Mechanism of whiplash injury. Clin Biomech 13:239–249

    Article  Google Scholar 

  33. Panjabi MM, Nibu K, Cholewicki J (1998) Whiplash injuries and the potential for mechanical instability. Eur Spine J 7:484–492

    CAS  PubMed  Google Scholar 

  34. Panjabi MM, Miura T, Cripton PA, et al (2001) Development of a system for in vitro neck muscle force replication in whole cervical spine experiments. Spine 26:2214–2219

    CAS  PubMed  Google Scholar 

  35. Pearson AM, Ivancic PC, Ito S, Panjabi MM (2003) Facet joint kinematics and injury mechanisms during simulated whiplash. Spine (in press)

  36. Penning L (1978) Normal movements of the cervical spine. AJR 130:317–326

    CAS  Google Scholar 

  37. Richter M, Otte D, Pohlemann T, Krettek C, Blauth M (2000) Whiplash-type neck distortion in restrained car drivers: frequency, causes and long-term results. Eur Spine J 9:109–117

    Article  CAS  PubMed  Google Scholar 

  38. Richter M, Wilke HJ, Kluger P, Claes L, Puhl W (2000) Load-displacement properties of the normal and injured lower cervical spine in vitro. Eur Spine J 9:104–108

    Article  CAS  PubMed  Google Scholar 

  39. Shea M, Wittenberg RH, Edwards WT, White AA 3rd, Hayes WC (1992) In vitro hyperextension injuries in the human cadaveric cervical spine. J Orthop Res 10:911–916

    CAS  PubMed  Google Scholar 

  40. Spitzer WO, Skovron ML, Salmi LR, et al (1995) Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining “whiplash” and its management. Spine 20:1S–73S

    CAS  PubMed  Google Scholar 

  41. Squires B, Gargan MF, Bannister GC (1996) Soft-tissue injuries of the cervical spine: 15-year follow-up. J Bone Joint Surg Br 78:955–957

    CAS  PubMed  Google Scholar 

  42. Sturzenegger M, Radanov BP, Di Stefano G (1995) The effect of accident mechanisms and initial findings on the long-term course of whiplash injury. J Neurol 242:443–449

    CAS  PubMed  Google Scholar 

  43. White AA 3rd, Panjabi MM (1990) Clinical biomechanics of the spine, JB Lipincott, Philadelphia, pp 110

  44. Yoganandan N, Pintar F, Butler J, et al (1989) Dynamic response of human cervical spine ligaments. Spine 14:1102–1110

    CAS  PubMed  Google Scholar 

  45. Yoganandan N, Kumaresan S, Pintar FA (2000) Geometric and mechanical properties of human cervical spine ligaments. J Biomech Eng 122:623–629

    Article  CAS  PubMed  Google Scholar 

  46. Yoganandan N, Cusick JF, Pintar FA, Rao RD (2001) Whiplash injury determination with conventional spine imaging and cryomicrotomy. Spine 26:2443–2448

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Panjabi.

Additional information

This research was supported by NIH Grant 1 R01 AR45452 1A2 and the Doris Duke Charitable Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivancic, P.C., Pearson, A.M., Panjabi, M.M. et al. Injury of the anterior longitudinal ligament during whiplash simulation. Eur Spine J 13, 61–68 (2004). https://doi.org/10.1007/s00586-003-0590-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0590-3

Keywords

Navigation