Skip to main content

Advertisement

Log in

Automated detection of anomalies in cervix cells using image analysis and machine learning

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Usage machine-based learning image cytometry to establish the diagnosis of cervix cancer using cellular morphology classification in comparison to the conventional cytological test. The study was divided into two phases consisting of 15 samples of cervix cells. In phase1, with previous diagnosis, the samples were divided into three groups of five samples each: normal (NC), low-grade squamous intraepithelial lesion (LGSIL or LSIL), and high-grade squamous intraepithelial lesion (HGSIL or HSIL). Images of cells were analyzed to create a training set of cells with known diagnosis for machine learning purposes. With the numerical data created, the software was trained to automatically classify the three types of cells. In phase 2, 885 cells were classified without previous diagnosis. In a last step, the classification of CPA was compared to cytopathology. NC and HSIL were identified with a high sensitivity and specificity (99%, 99%) and (98%, 97%) respectively. While the sensitivity and specificity of LSIL cells were lower (78%, 79%). It is possible to extract features of cervical cells by automatically generating numerical data that allowed the program to identify and classify different cell classes, using simple and low-cost reagents and free, reproducible softwires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal N, Biancardi AM, Patten FW, Reeves AP, Seibel EJ (2014) Three-dimensional DNA image cytometry by optical projection tomographic microscopy for early cancer diagnosis. J Med Imaging 1(1):017501

    Article  Google Scholar 

  • Baik J, Ye Q, Zhang L, Poh C, Rosin M, MacAulay C, Guillaud M (2014) Automated classification of oral premalignant lesions using image cytometry and random forests-based algorithms. Cell Oncol (Dordr) 37(3):193–202

  • Böcking A, Nguyen VQ (2004) Diagnostic and prognostic use of DNA image cytometry in cervical squamous intraepithelial lesions and invasive carcinoma. Cancer 102(1):41–54

    Article  CAS  PubMed  Google Scholar 

  • Buzin AR, Pinto FE, Nieschke K, Mittang A, Andrade TU, Endringer DC, Tarnok A, Lenz D (2015) Replacement of specific markers for apoptosis and necrosis by nuclear morphology for affordable cytometry. J Immunol Methods (Brazil) 420:24–30

    Article  CAS  Google Scholar 

  • Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Golland P, Sabatini DM (2006) CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7(10):R100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho G (2002) Citologia do Trato Genital Feminino, 4th edn. Atheneu, São Paulo

    Google Scholar 

  • Goda K, Di Carlo D, Jalali B (2013) Ultrafast automated image cytometry for cancer detection. Conf Proc IEEE Eng Med Biol Soc 2013:129–132

    Google Scholar 

  • Gonçalves S, Haa P, Spada C, Fontana CS, Rangel L, Mendonça MAC, Carvalho CR (2007) Citometria de imagem do conteúdo de DNA nuclear decélulas epiteliais do colo uterino. RBAC 39(1):71–78

    Google Scholar 

  • Grote HJ, Nguyen HV, Leick AG, Böcking A (2004) Identification of progressive cervical epithelial cell abnormalities using DNA image cytometry. Cancer 102(6):373–379

    Article  PubMed  Google Scholar 

  • Gu SY, Yong YS, Wang YH, Du YJ (2010) The application of fluorescence in situ hybridization and automated image cytometry in the diagnosis of urothelial carcinoma of bladder. Zhonghua Wai Ke Za Zhi 48(12):933–936

    PubMed  Google Scholar 

  • Hackenhaar AA, Cesar JA, Domingues MR (2006) Examination Pap smears in women aged 20 to 59 years in Pelotas, RS: prevalence and factors associated with not performing. Rev Bras Epidemiol 9(1):103–111

    Article  Google Scholar 

  • Izmajłowicz B, Kornafel J, Błaszczyk J (2014) Multiple neoplasms among cervical cancer patients in the material of the lower Silesian cancer registry. Adv Clin Exp Med 23(3):433–440

    Article  PubMed  Google Scholar 

  • Lamprecht MR, Sabatini DM, Carpenter AE (2007) CellProfiler: free, versatile software for automated biological image analysis. Biotechniques 42(1):71–75

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Vigliotti JS, Vigliotti VS, Jones W (2014) From human papillomavirus (HPV) detection to cervical cancer prevention in clinical practice. Cancers 6(4):2072–2099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucena LT, Zãn DG, Crispim PTB, Ferrari JO (2011) Fatores que influenciam a realização do exame preventivo do câncer cérvico-uterino em Porto Velho, Estado de Rondônia, Brasil. Rev Pan-Amaz Saúde 2(2):45–50

    Article  Google Scholar 

  • Mat-Isa NA, Mashor MY, Othman NH (2008) An automated cervical pre-cancerous diagnostic system. Artif Intell Med 42(1):1–11

    Article  PubMed  Google Scholar 

  • Meng Z, Shi J, Zhu C, Gu J, Zhou C (2013) Automated quantification of DNA aneuploidy by image cytometry as an adjunct for the cytologic diagnosis of malignant effusion. Anal Cell Pathol (Amst) 36(3–4):107–115

    Article  CAS  Google Scholar 

  • Mittag A, Pinto FE, Endringer DC, Tarnok A, Lenz D (2011) Cellular analysis by open-source software for affordable cytometry. Scanning 33(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Nunes CSM, Tarnok A, Mittag A, Andrade TU, Endringer DC, Lenz D (2017) Differentiation of populations with different fluorescence intensities with a machine-learning based classifier. Comp Clin Pathol 26:385

    Article  Google Scholar 

  • Pinho AA, Junior IF (2003) Prevenção do câncer de colo do útero: um modelo teórico para analisar o acesso e a utilização do teste de Papanicolau. Rev Bras Saúde Matern Infant 3(1):95–112

    Article  Google Scholar 

  • Safaeian M, Solomon D, Castle PE (2007) Cervical cancer prevention-cervical screening: science in evolution. Obstet Gynecol Clin N Am 34(4):739–760

    Article  Google Scholar 

  • Satyanarayana L, Asthana S, Bhambani S, Sodhani P, Gupta S (2014) A comparative study of cervical cancer screening methods in a rural community setting of North India. Indian J Cancer 51(2):124–128

    Article  CAS  PubMed  Google Scholar 

  • Tavares SBN, Amaral RG, Manrique EJ et al (2007) Controle da Qualidade em Citopatologia Cervical: Revisão de Literatura. Rev Bras Cancerol 53(3):355–364

    Google Scholar 

  • Tozetti PB, Lima EM, Nascimento AM, Endringer DC, Pinto FE, Andrade TU, Mittag A, Tarnok A, Lenz D (2014) Morphometry to identify subtypes of leukocytes. Hematol Oncol Stem Cell Ther 7(2):69–75

    Article  PubMed  Google Scholar 

  • van der Laak JA, Siebers AG, Cuijpers VM, Pahlplatz MM, de Wilde PC, Hanselaar AG (2002) Automated identification of diploid reference cells in cervical smears using image analysis. Cytometry 47(4):256–264

    Article  PubMed  Google Scholar 

  • Watson M, Benard V, Thomas C, Brayboy A, Paisano R, Becker T (2014) Cervical cancer incidence and mortality among American Indian and Alaska native women, 1999-2009. Am J Public Health 104(Suppl 3):S415–S422

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Fundação de Amparo à Pesquisa do Espírito Santo (FAPES) (Leonardao Moreira Moscon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Lenz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moscon, L.M., Macedo, N.D., Nunes, C.S.M. et al. Automated detection of anomalies in cervix cells using image analysis and machine learning. Comp Clin Pathol 28, 177–182 (2019). https://doi.org/10.1007/s00580-018-2812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2812-4

Keywords

Navigation