Skip to main content
Log in

Biomechanical properties and dry weight content of the developing superficial digital flexor tendon in rabbit

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Composition and structural organization of tendon changes during aging and these alterations affect the mechanical behaviors of this structure. Therefore, this experiment was designed to study the biomechanical properties together with changes in dry weight content of normal superficial digital flexor tendon of rabbits from pre-natal stage to 112 days post-natally. Forty-two White New Zealand rabbits were assigned to seven different age groups (from 5–7 days before birth to 112 days after birth), each consisting of six animals. The right superficial digital flexor tendons were used for biomechanical studies and the left ones for percentage dry weight investigation. Ultimate tensile strength, stiffness, maximum energy, and percentage dry weight values significantly increased in each higher age group compared to those of the younger group and the yield strain and maximum strain decreased comparatively as a function of age. This improvement in the mechanical behavior of tendons during aging could be correlated with increase in collagen content, alteration in the collagen fibril differentiation and distribution from small-sized unimodal fibrils to trimodally distributed collagen fibrils, improvement in quantity and quality of the cross-linking, fibril continuity, type of collagen, development and maturation of crimp pattern, tissue alignment and organization. Therefore, characterization of mechanical behavior and tissue dry weight, as an index of collagen content, from fetal stage to skeletally mature animals is essential in better understanding the tissue structural development and hierarchical organization coincidental with the material properties of this organ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard P, Thiery PS, Bourgault A, Drouin G (1979) Pressure dependence of the area micrometer’ method in evaluation of cruciate ligament cross-section. J Biomed Eng 1:265–267, doi:10.1016/0141-5425(79)90163-8

    Article  PubMed  CAS  Google Scholar 

  • Becker CK, Savelberg HH, Barneveld A (1994) In vitro mechanical properties of the accessory ligament of the deep digital flexor tendon in horses in relation to age. Equine Vet J 26:454–459

    Article  PubMed  CAS  Google Scholar 

  • Beredjiklian PK, Favata M, Cartmell JS, Flanagan CL, Crombleholme TM, Soslowsky LJ (2003) Regenerative versus reparative healing in tendon: a study of biomechanical and histological properties in fetal sheep. Am Biomed Eng 31:1143–1152, doi:10.1114/1.1616931

    Article  Google Scholar 

  • Birk DE, Mayne R (1997) Localization of collagen types I, III and during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 72(4):352–361

    PubMed  CAS  Google Scholar 

  • Butler DL, Grood ES, Noyes FR (1978) Biomechanics of ligaments and tendons. Exerc Sport Sci Rev 6:125–181

    PubMed  CAS  Google Scholar 

  • Cribb AM, Scott JE (1995) Tendon response to tensile stress: an ultrastructural investigation of collagen: proteoglycan interactions in stressed tendon. J Anat 187:423–428

    PubMed  Google Scholar 

  • Flint MH, Craig AS, Reily HC, Gillard GC, Parry DAD (1984) Collagen fibril diameters and glycosaminoglycan content of skin-indices of tissue maturity and function. Connect Tissue Res 13:69–81, doi:10.3109/03008208409152144

    Article  PubMed  CAS  Google Scholar 

  • Frank C, McDonald D, Bray D, Bray R, Rangayyan R, Chimich D et al (1992) Collagen fibril diameters in the healing adult rabbit medial collateral ligament. Connect Tissue Res 27:251–263, doi:10.3109/03008209209007000

    Article  PubMed  CAS  Google Scholar 

  • Goodship AE, Cooke PH (1987) Biocompatibility of tendon and ligaments. Crit Rev Biocomp 2(2):303–334

    Google Scholar 

  • Graham HK, Holmes DF, Watson RB, Kadler KE (2000) Identification of collagen fibril fusion during vertebrate tendon morphogenesis. The process relies on unipolar fibrils and is regulated by collagen-proteoglycan interaction. J Mol Biol 28:891–902, doi:10.1006/jmbi.1999.3384

    Article  CAS  Google Scholar 

  • Greiling H, Gressner AM, Stuhlsatz HW (1979) Effects of agents interacting with connective tissues. Agents Act Suppl 5:99–109

    Google Scholar 

  • Hashemi J, Chandrashekar N, Slauterbeck J (2005) The mechanical properties of the human patellar tendon are correlated to its mass density and are independent of sex. Clin Biomech (Bristol, Avon) 20(6):645–652, doi:10.1016/j.clinbiomech.2005.02.008

    Article  Google Scholar 

  • Haut RC, Lancaster RL, Charles ED (1992) Mechanical properties of the canine patellar tendon: Some correlation with age and the content of collagen. J Biomech 25:163–173, doi:10.1016/0021-9290(92)90273-4

    Article  PubMed  CAS  Google Scholar 

  • Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C (1980) Morphological, immunochemical and biochemical study of rabbit Achilles tendon at various ages. J Bone Joint Surg 62-A(4):583–598

    Google Scholar 

  • Karpakka J, Vannannen K, Virtanen P, Savolainen J, Orava S, Takala TE (1990) The effects of remobilization and exercise on collagen biosynthesis in rat tendon. Acta Physiol Scand 139:139–145

    Article  PubMed  CAS  Google Scholar 

  • McBride DJ, Hahn RA, Silver FH (1985) Morphological characterization of tendon development during chick embryogenesis: measurement of birefringence retardation. Int J Biol Macromol 7:71–76, doi:10.1016/0141-8130(85)90034-0

    Article  Google Scholar 

  • McPherson JM, Piez KA (1988) The molecular and cellular biology of wound repair. Plenum, New York, pp 471–496

    Google Scholar 

  • Mitchell TW, Rigby BJ (1975) In vivo and in vitro ageing of collagen examined using isometric melting technique. Biochim Biophys Acta 393:531–541

    PubMed  CAS  Google Scholar 

  • Nordin M, Frankel VH (1980) Biomechanics of collagenous tissues. In: Frankel VH, Nordin M (eds) Basic biomechanics of the skeletal system. Lea and Febiger, Philadelphia, pp 87–110

    Google Scholar 

  • Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg Am 66:344–352

    PubMed  CAS  Google Scholar 

  • Oryan A (1995) Role of collagen in soft connective tissue wound healing. Transplant Proc 27(5):2759–2761

    PubMed  CAS  Google Scholar 

  • Oryan A, Peyghan R (1996) Morphology and biomechanical properties of tendons and ligaments. J Fac Vet Med Tehran Univ 50(2):13–38

    Google Scholar 

  • Oryan A, Shoushtari AH (2007) Histology and ultrastructure of the developing superficial digital flexor tendon in rabbits. Anat Histol Embryol 37:134–140, doi:10.1111/j.1439-0264.2007.00811.x

    Google Scholar 

  • Oryan A, Peyghan R, Emami MJ (1993) The effects of physical activity on tendon healing. Iranian J Med Sci 18(2):13–20

    Google Scholar 

  • Parry DAD, Barnes GRG, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc London (Biol) 203:305–321

    Google Scholar 

  • Parry DAD, Craig AS (1984) Growth and development of collagen fibrils. In: Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Nijhoff, Boston, pp 34–64

    Google Scholar 

  • Parry DAD, Flint MH, Gillard GC, Craig AS (1982) A role for glycosaminoglycan in the development of collagen. FEBS Lett 149(1):1–7, doi:10.1016/0014-5793(82)81060-0

    Article  PubMed  CAS  Google Scholar 

  • Provenzano PP, Vanderby R Jr (2006) Collagen fibril morphology and organization: Implication for force transmission in ligament and tendon. Matrix Biol 25(2):71–84, doi:10.1016/j.matbio.2005.09.005

    Article  PubMed  CAS  Google Scholar 

  • Provenzano PP, Alejandro-Osorio AL, Valhmu WB, Vandery R Jr (2005) Intrinsic fibroblast mediated remodeling of damaged collagenous matrices in vivo. Matrix Biol 23:543–555, doi:10.1016/j.matbio.2004.09.008

    Article  PubMed  CAS  Google Scholar 

  • Raspanti M, Ottani V, Ruggeri A (1990) Subfibrillar architecture and functional properties of collagen: A comparative study in rat tendons. J Anat 172:157–164

    PubMed  CAS  Google Scholar 

  • Scott JE (1992) Supramolecular organization of extra-cellular matrix glycosaminoglycans, in vitro and in the tissues. Federat Am Scient Exp Biol J 6(9):2639–2645

    CAS  Google Scholar 

  • Scott JE (1993) The nomenclature of the glycosaminoglycans and proteoglycans. Glycoconj J 10:2639–2645, doi:10.1007/BF00737960

    Article  Google Scholar 

  • Scott JE, Orford CR (1981) Dermatan sulphate proteoglycan associated with rat tail tendon collagen at the “d” band in the gap region. Biochem J 197:213–216

    PubMed  CAS  Google Scholar 

  • Shadwick ER (1990) Elastic energy storage in tendons: Mechanical differences related to function and age. J Appl Physiol 68:1033–1040, doi:10.1063/1.346741

    Article  PubMed  CAS  Google Scholar 

  • Silver IA, Brown PN, Goodship AE, Lanyon LE, McCullagh KG, Perry GC et al (1985) A clinical and experimental study of tendon injury, healing and treatment in the horse. Equine Vet J Suppl 1:1–43

    Google Scholar 

  • Silver FH, Freeman JW, Seehra GP (2003) Collagen self assembly and the development of tendon mechanical properties. J Biomech 36(10):1529–1553, doi:10.1016/S0021-9290(03)00135-0

    Article  PubMed  Google Scholar 

  • Viidik A (1980) Interdependence between structure and function in collagenous tissues. In: Viddik A, Vuust J (eds) Biology of collagen. Academic, London, pp 257–280

    Google Scholar 

  • Williams IF, McCullagh KG, Silver IA (1984) The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect Tissue Res 12:211–227, doi:10.3109/03008208409013684

    Article  PubMed  CAS  Google Scholar 

  • Williams IF, Craig AS, Parry DAD, Goodship AE, Shah J, Silver IA (1985) Development of collagen fibril organization and collagen crimp pattern during tendon healing. Int J Biol Macromol 7:275–282, doi:10.1016/0141-8130(85)90025-X

    Article  CAS  Google Scholar 

  • Woo SL-Y, Ritter MA, Amiel D, Sanders TM, Gomez MA, Kuei SC et al (1980) The biomechanical and biochemical properties of swine tendons—long term effects of exercise on the digital extensors. Connect Tissue Res 7:177–183, doi:10.3109/03008208009152109

    Article  PubMed  CAS  Google Scholar 

  • Woo SL-Y, Gomez MA, Akeson WH (1985) Mechanical behaviour of soft connective tissues: Measurements modification, injuries and treatment. In: Naham AM, Melvin J (eds) The biomechanics of trauma. Appleton-Century-Crofts, Norwalk, pp 109–133

    Google Scholar 

  • Woo SL-Y, Inoue M, McGurk-Burleson E, Gomez MA (1987) Treatment of the medial collateral ligament injury II: Structure and function of canine knees response to differing treatment regimens. Am J Sports Med 15:22–29, doi:10.1177/036354658701500104

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Young BB, Ezura Y, Favata M, Soslowsky LJ, Chakravarti S et al (2005) Development of tendon structure and function: regulation of collagen fibrillogenesis. J Musculoskelet Neuronal Interact 5(1):5–21

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oryan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oryan, A., Shoushtari, A.H. Biomechanical properties and dry weight content of the developing superficial digital flexor tendon in rabbit. Comp Clin Pathol 18, 131–137 (2009). https://doi.org/10.1007/s00580-008-0764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-008-0764-9

Keywords

Navigation