Skip to main content

Advertisement

Log in

Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The composition of arbuscular mycorrhizal fungal (AMF) communities should reflect not only responses to host and soil environments, but also differences in functional roles and costs vs. benefits among arbuscular mycorrhizal fungi. The coffee agroecosystem allows exploration of the effects of both light and soil fertility on AMF communities, because of the variation in shade and soil nutrients farmers generate through field management. We used high-throughput ITS2 sequencing to characterize the AMF communities of coffee roots in 25 fields in Costa Rica that ranged from organic management with high shade and no chemical fertilizers to conventionally managed fields with minimal shade and high N fertilization, and examined relationships between AMF communities and soil and shade parameters with partial correlations, NMDS, PERMANOVA, and partial least squares analysis. Gigasporaceae and Acaulosporaceae dominated coffee AMF communities in terms of relative abundance and richness, respectively. Gigasporaceae richness was greatest in conventionally managed fields, while Glomeraceae richness was greatest in organic fields. While total AMF richness and root colonization did not differ between organic and conventionally managed fields, AMF community composition did; these differences were correlated with soil nitrate and shade. OTUs differing in relative abundance between conventionally managed and organic fields segregated into four groups: Gigasporaceae associated with high light and nitrate availability, Acaulosporaceae with high light and low nitrate availability, Acaulosporaceae and a single relative of Rhizophagus fasciculatus with shade and low nitrate availability, and Claroideoglomus/Glomus with conventionally managed fields but uncorrelated with shade and soil variables. The association of closely related taxa with similar shade and light availabilities is consistent with phylogenetic trait conservatism in AM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The ITS2 DNA sequences generated and analyzed during this study are publicly available as BioProject PRJNA531329, BioSamples SAMN11371063-87 and Sequence Read Archives SRR8868669-93 at the National Center for Biotechnology Information, USA. The environmental dataset for the 25 coffee fields is available through Dryad (https://doi.org/10.5061/dryad.q2bvq83g1).

References

  • Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88:559–566

    Article  PubMed  Google Scholar 

  • Alguacil MDM, Torres MP, Montesinos-Navarro A, Roldán A (2016) Soil characteristics driving arbuscular mycorrhizal fungal communities in semiarid Mediterranean soils. Appl Environ Microbiol 82:3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen EB, Egerton-Warburton LM, Hilbig BE, Valliere JM (2016) Interactions of arbuscular mycorrhizal fungi, critical loads of nitrogen deposition, and shifts from native to invasive species in a southern California shrubland. Botany 94:425–433

    Article  CAS  Google Scholar 

  • Allinne C, Savary S, Avelino J (2016) Delicate balance between pest and disease injuries, yield performance, and other ecosystem services in the complex coffee-based systems of Costa Rica. Agric Ecosyst Environ 222:1–12

    Article  Google Scholar 

  • Antoninka AJ, Ritchie ME, Johnson NC (2015) The hidden Serengeti—Mycorrhizal fungi respond to environmental gradients. Pedobiologia 58:165–176

    Article  Google Scholar 

  • Argüello A, O'Brien MJ, van der Heijden MGA, Wiemken A, Schmid B, Niklaus PA, Maherali H (2016) Options of partners improve carbon for phosphorus trade in the arbuscular mycorrhizal mutualism. Ecol Lett 19(6):648–656

  • Arias RM, Heredia-Abarca G, Sosa VJ, Fuentes-Ramírez LE (2012) Diversity and abundance of arbuscular mycorrhizal fungi spores under different coffee production systems and in a tropical montane cloud forest patch in Veracruz, Mexico. Agrofor Syst 85:179–193

    Article  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Bagyaraj DJ, Thilagar G, Ravisha C, Kushalappa CG, Krishnamurthy KN, Vaast P (2015) Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agric Ecosyst Environ 202:198–202

    Article  Google Scholar 

  • Bainard LD, Chagnon P-L, Cade-Menun BJ, Lamb EG, LaForge K, Schellenberg M, Hamel C (2017) Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains. Agric Ecosyst Environ 249:187–195

    Article  Google Scholar 

  • Ballaré CL, Mazza CA, Austin AT, Pierik R (2012) Canopy light and plant health. Plant Physiol 160:145–155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sánchez-García M, Ebersberger I, de Sousa F, Amend A, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4:914–919

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300

    Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12(1):13–21

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Camenzind T, Hempel S, Homeier J, Horn S, Velescu A, Wilcke W, Rillig MC (2014) Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Glob Chang Biol 20:3646–3659

    Article  PubMed  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carballar-Hernández S, Hernández-Cuevas LV, Montaño NM, Larsen J, Ferrera-Cerrato R, Taboada-Gaytán OR, Montiel-González AM, Alarcón A (2017) Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. respond to soil properties and agronomic management under field conditions. Agric Ecosyst Environ 245:43–51

    Article  Google Scholar 

  • Cerda R, Allinne C, Gary C, Tixier P, Harvey CA, Krolczyk L, Mathiot C, Clément E, Aubertot J-N, Avelino J (2017) Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. Eur J Agron 82:308–319

    Article  Google Scholar 

  • Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary VB, Cuenca G, Johnson NC (2018) Tropical-temperate comparison of landscape-scale arbuscular mycorrhizal fungal species distributions. Divers Distrib 24:116–128

    Article  Google Scholar 

  • Chen Y-L, Zhang X, Ye J-S, Han H-Y, Wan S-Q, Chen B-D (2014) Six-year fertilization modifies the biodiversity of arbuscular mycorrhizal fungi in a temperate steppe in Inner Mongolia. Soil Biol Biochem 69:371–381

    Article  CAS  Google Scholar 

  • De Beenhouwer M, Muleta D, Peeters B, Van Geel M, Lievens B, Honnay O (2015a) DNA pyrosequencing evidence for large diversity differences between natural and managed coffee mycorrhizal fungal communities. Agron Sustain Dev 35:241–249

    Article  Google Scholar 

  • De Beenhouwer M, Van Geel M, Ceulemans T, Muleta D, Lievens B, Honnay O (2015b) Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol Biochem 91:133–139

    Article  CAS  Google Scholar 

  • de Souza AF, Zambolim L, de Jesus Júnior VC, Cecon PR (2011) Chemical approaches to manage coffee leaf rust in drip irrigated trees. Australas Plant Pathol 40:293–300

    Article  CAS  Google Scholar 

  • Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR, Cole JR, Midgley DJ, Tran-Dinh N (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5

    Article  PubMed  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal 4:337–345

    Article  PubMed  Google Scholar 

  • Egerton-Warburton LM, Allen EB (2000) Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecol Appl 10:484–496

    Article  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grassland. Ecol Monogr 774):527–544

  • Eom A-H, Hartnett DC, Wilson GWT, Figge DAH (1999) The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am Midl Nat 142:55–70

    Article  Google Scholar 

  • Fernandes RA, Ferreira DA, Saggin-Junior OJ, Stürmer SL, Paulino HB, Siqueira JO, Carneiro MAC (2016) Occurrence and species richness of mycorrhizal fungi in soil under different land use. Can J Soil Sci 96:271–280

    Article  Google Scholar 

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265

    Article  CAS  PubMed  Google Scholar 

  • Gehring CA (2003) Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species. Plant Ecol 167:127–139

    Article  Google Scholar 

  • Gehring CA, Connell JH (2006) Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: occurrence, colonization, and relationships with plant performance. Mycorrhiza 16:89–98

    Article  PubMed  Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond JP, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham JH, Eissenstat DM, Drouillard DL (1991) On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5:773–779

    Article  Google Scholar 

  • Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI, Schonrogge K (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6:973–980

    Article  PubMed  PubMed Central  Google Scholar 

  • Haggar, J., M. Barrios, M. Bolaños, M. Merlo, P. Moraga, R. Munguia, A. Ponce, S. Romero, G. Soto, C. Staver, and E. de M. F. Virginio. 2011. Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agrofor Syst 82:285–301

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Heinemeyer A, Ridgway KP, Edwards EJ, Benham DG, Young JPW, Fitter AH (2004) Impact of soil warming and shading on colonization and community structure of arbuscular mycorrhizal fungi in roots of a native grassland community. Glob Chang Biol 10:52–64

    Article  Google Scholar 

  • Hernández-Martínez G, Manson RH, Hernández AC (2009) Quantitative classification of coffee agroecosystems spanning a range of production intensities in central Veracruz, Mexico. Agric Ecosyst Environ 134:89–98

    Article  Google Scholar 

  • Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, Öpik M, Vasar M, Zobel M, Wilson SD (2014) Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol 203:233–244

    Article  CAS  PubMed  Google Scholar 

  • Ipsilantis I, Samourelis C, Karpouzas DG (2012) The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biol Biochem 45:147–155

    Article  CAS  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum, L. New Phytol 120:509–516

    Article  CAS  Google Scholar 

  • Janzen DH (1983) Costa Rican natural history. University of Chicago Press, Chicago, Illinois

    Book  Google Scholar 

  • Jensen A, Jakobsen I (1980) The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertilizer treatments. Plant Soil 55:403–414

    Article  CAS  Google Scholar 

  • Ji B, Bever JD (2016) Plant preferential allocation and fungal reward decline with soil phosphorus: implications for mycorrhizal mutualism. Ecosphere 7:e01256

    Article  Google Scholar 

  • Jin H, Germida JJ, Walley FL (2013) Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Appl Soil Ecol 72:22–30

    Article  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales: Tansley review. New Phytol 185:631–647

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Trowbridge J, Mandyam K, Johnson L (2005) Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonization but shifts community composition—evidence from rDNA data. Biol Fertil Soils 41:217–224

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M (2000) Promotion of utilization of arbuscular mycorrhiza through reduced P fertilization 1. Bioassays in a growth chamber. Plant Soil 227:191–206

    Article  CAS  Google Scholar 

  • Kahiluoto H, Ketoja E, Vestberg M, Saarela I (2001) Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant & Soil 231:65–79

    Article  CAS  Google Scholar 

  • Kawahara A, An G-H, Miyakawa S, Sonoda J, Ezawa T (2016) Nestedness in arbuscular mycorrhizal fungal communities along soil pH gradients in early primary succession: acid-tolerant fungi are pH generalists. PLoS One 11:e0165035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Kohout P, Doubková P, Bahram M, Suda J, Tedersoo L, Voříšková J, Sudová R (2015) Niche partitioning in arbuscular mycorrhizal communities in temperate grasslands: a lesson from adjacent serpentine and nonserpentine habitats. Mol Ecol 24:1831–1843

    Article  CAS  PubMed  Google Scholar 

  • Konvalinková T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci 7:782

    Article  PubMed  PubMed Central  Google Scholar 

  • Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J (2015) Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front Plant Sci 6:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Koorem K, Tulva I, Davison J, Jairus T, Öpik M, Vasar M, Zobel M, Moora M (2017) Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped by host characteristics and canopy-mediated light availability. Plant Soil 410:259–271

    Article  CAS  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JMH, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci 112:10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  PubMed  Google Scholar 

  • Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops – a meta-analysis. Soil Biol Biochem 81:147–158

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Twomlow SJ (2008) Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of southern Africa: a case study from Zimbabwe. Biol Fertil Soils 44:917–923

    Article  Google Scholar 

  • Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92:1292–1302

    Article  PubMed  Google Scholar 

  • Lendenmann M, Thonar C, Barnard RL, Salmon Y, Werner RA, Frossard E, Jansa J (2011) Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21:689–702

    Article  CAS  PubMed  Google Scholar 

  • Li X-L, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Lilleskov EA, Kuyper TW, Bidartondo MI, Hobbie EA (2019) Atmospheric nitrogen deposition impacts on the structure and function of forest mycorrhizal communities: a review. Environ Pollut 246:148–162

    Article  CAS  PubMed  Google Scholar 

  • Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers – a user’s guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Johnson NC, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytol 194:523–535

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Zhang T, Gilliam FS, Gundersen P, Zhang W, Chen H, Mo J (2013) Interactive effects of nitrogen and phosphorus on soil microbial communities in a tropical forest. PLoS One 8:e61188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, Jiang S, Zhang Y, Yue S, Christie P, Murray PJ, Li X, Zhang J (2014) Spatiotemporal changes in arbuscular mycorrhizal fungal communities under different nitrogen inputs over a 5-year period in intensive agricultural ecosystems on the North China Plain. FEMS Microbiol Ecol 90:436–453

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Johnson NC, Mao L, Shi G, Jiang S, Ma X, Du G, An L, Feng H (2015a) Phylogenetic structure of arbuscular mycorrhizal community shifts in response to increasing soil fertility. Soil Biol Biochem 89:196–205

    Article  CAS  Google Scholar 

  • Liu Y, Mao L, Li J, Shi G, Jiang S, Ma X, An L, Du G, Feng H (2015b) Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant Soil 386:341–355

    Article  CAS  Google Scholar 

  • Lovelock CE, Andersen K, Morton JB (2003) Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268–279

    Article  PubMed  Google Scholar 

  • Lyngbæk AE, Muschler RG, Sinclair FL (2001) Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agrofor Syst 53:205–213

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • McCune B, Mefford MJ (2016) PC-ORD. Multivariate analysis of ecological data. MjM Software Design, Gleneden Beach, Oregon

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. The New Phytologist 115:495–501

    Article  PubMed  Google Scholar 

  • Menezes KMS, Silva DKA, Queiroz MAA, Félix WP, Yano-Melo AM (2016) Arbuscular mycorrhizal fungal communities in buffelgrass pasture under intercropping and shading systems in Brazilian semiarid conditions. Agric Ecosyst Environ 230:55–67

    Article  Google Scholar 

  • Menge JA, Steirle D, Bagyaraj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol 80:575–578

    Article  CAS  Google Scholar 

  • Merryweather J, Fitter A (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta II. Seasonal and spatial patterns of fungal populations. New Phytol 138:131–142

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2007) Composition of coffee shade tree species and density of indigenous arbuscular mycorrhizal fungi (AMF) spores in Bonga natural coffee forest, southwestern Ethiopia. For Ecol Manag 241:145–154

    Article  Google Scholar 

  • Muleta D, Assefa F, Nemomissa S, Granhall U (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fertil Soils 44:653–659

    Article  Google Scholar 

  • Muschler RG (2001) Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agrofor Syst 51:131–139

    Article  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  PubMed  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker DM, de Sousa F, Gamper HA, Larsson E, Larsson K-H, Kõljalg U, Edgar RC, Abarenkov K (2015) A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes Environ 30:145–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E (2010) Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724–738

    Article  CAS  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  CAS  Google Scholar 

  • Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–544

    Article  CAS  PubMed  Google Scholar 

  • Pearson JN, Jakobsen I (1993) Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol 124:481–488

    Article  CAS  Google Scholar 

  • Picone C (2000) Diversity and abundance of arbuscular–mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32:734–750

    Article  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol Sci 276:4237–4245

    Article  Google Scholar 

  • Prates Júnior, P., B. C. Moreira, M. de C. S. da Silva, T. G. R. Veloso, S. L. Stürmer, R. B. A. Fernandes, E. de S. Mendonça, and M. C. M. Kasuya. 2019. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS One 14:e0209093

  • Rivera-Becerril F, van Tuinen D, Chatagnier O, Rouard N, Béguet J, Kuszala C, Soulas G, Gianinazzi-Pearson V, Martin-Laurent F (2017) Impact of a pesticide cocktail (fenhexamid, folpel, deltamethrin) on the abundance of Glomeromycota in two agricultural soils. Sci Total Environ 577:84–93

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Echeverría S, Teixeira H, Correia M, Timóteo S, Heleno R, Öpik M, Moora M (2017) Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol 213:380–390

    Article  PubMed  Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • SAS Institute, Inc (2016) JMP. Cary, North Carolina

    Google Scholar 

  • Schnabel, F., E. de Melo Virginio Filho, S. Xu, I. D. Fisk, O. Roupsard, and J. Haggar. 2018. Shade trees: a determinant to the relative success of organic versus conventional coffee production. Agrofor Syst 92:1535–1549

  • Sheldrake M, Rosenstock NP, Mangan S, Revillini D, Sayer EJ, Olsson PA, Verbruggen E, Tanner EVJ, Turner BL, Wright SJ (2018) Responses of arbuscular mycorrhizal fungi to long-term inorganic and organic nutrient addition in a lowland tropical forest. The ISME Journal 12:2433–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi G, Liu Y, Johnson NC, Olsson PA, Mao L, Cheng G, Jiang S, An L, Du G, Feng H (2014) Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant Soil 378:173–188

    Article  CAS  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Siqueira JO, Saggin-Júnior OJ, Flores-Aylas WW, Guimarães PTG (1998) Arbuscular mycorrhizal inoculation and superphosphate application influence plant development and yield of coffee in Brazil. Mycorrhiza 7:293–300

    Article  CAS  Google Scholar 

  • Smith SE, Gianinazzi-Pearson V (1990) Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L.: effects of photon irradiance and phosphate nutrition. Aust J Plant Physiol 17:177–188

    CAS  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier Ltd.

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Sternhagen, E. C., K. L. Black, E. D. L. Hartmann, W. G. Shivega, P. G. Johnson, R. D. McGlynn, L. C. Schmaltz, R. J. A. Keller, S. N. Vink, and L. Aldrich-Wolfe. 2020. Contrasting patterns of functional diversity in coffee root fungal communities associated with organic and conventionally-managed fields. Applied and Environmental Microbiology 86. (DOI):https://doi.org/10.1128/AEM.00052-20

  • Stürmer SL, Oliveira LZ, Morton JB (2018) Gigasporaceae versus Glomeraceae (phylum Glomeromycota): a biogeographic tale of dominance in maritime sand dunes. Fungal Ecol 32:49–56

    Article  Google Scholar 

  • Teste FP, Laliberté E, Lambers H, Auer Y, Kramer S, Kandeler E (2016) Mycorrhizal fungal biomass and scavenging declines in phosphorus-impoverished soils during ecosystem retrogression. Soil Biol Biochem 92:119–132

    Article  CAS  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347–355

    Article  PubMed  Google Scholar 

  • Treseder KK, Allen EB, Egerton-Warburton LM, Hart MM, Klironomos JN, Maherali H, Tedersoo L (2018) Arbuscular mycorrhizal fungi as mediators of ecosystem responses to nitrogen deposition: a trait-based predictive framework. J Ecol 106:480–489

    Article  CAS  Google Scholar 

  • Valencia, V., P. West, E. J. Sterling, L. García-Barrios, and S. Naeem. 2015. The use of farmers’ knowledge in coffee agroforestry management: implications for the conservation of tree biodiversity. Ecosphere 6:art122

  • Van Geel M, Verbruggen E, De Beenhouwer M, van Rennes G, Lievens B, Honnay O (2017) High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards. Agric Ecosyst Environ 248:144–152

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen E, van der Heijden MGA, Weedon JT, Kowalchuk GA, Röling WFM (2012) Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341–2353

    Article  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267

  • Werner GDA, Kiers ET (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205:1437–1442

    Article  PubMed  Google Scholar 

  • Whitbeck JL (2001) Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica 33:303–311

    Article  Google Scholar 

  • White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315–327. PCR protocols: a guide to methods and applications. Academic, San Diego, CA

  • Williams A, Manoharan L, Rosenstock NP, Olsson PA, Hedlund K (2017) Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol 213:874–885

    Article  CAS  PubMed  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the many farmers who welcomed us onto their land and patiently answered our questions; Sydney Redmond for assistance in scoring root colonization; Ylva Lekberg for her invaluable logistical assistance; David Janos and two anonymous reviewers, whose suggestions greatly improved the manuscript; and the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported in this paper (URL: http://www.msi.umn.edu).

Funding

This research was funded by the Office of Undergraduate Research, the Biology Department Fuglestad-Torstveit Fund, and NSF award DUE-0969568 to the Division of Science and Mathematics at Concordia College, and EPSCoR Track 1 Award OIA-1355466 to North Dakota State University. Any opinions, findings, conclusions, or recommendations expressed here are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

LAW, RM, LS, EH, and PJ designed and executed the field study; RM, LS, EH, PJ, KB, WGS, and RA conducted the lab work; EH, PJ, RM, LS, KB, WGS, and RA contributed to data analysis; KB and SV conducted the bioinformatics; all authors contributed to the drafts of the manuscript; LAW wrote the final draft.

Corresponding author

Correspondence to Laura Aldrich-Wolfe.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldrich-Wolfe, L., Black, K.L., Hartmann, E.D.L. et al. Taxonomic shifts in arbuscular mycorrhizal fungal communities with shade and soil nitrogen across conventionally managed and organic coffee agroecosystems. Mycorrhiza 30, 513–527 (2020). https://doi.org/10.1007/s00572-020-00967-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-00967-7

Keywords

Navigation