Skip to main content
Log in

Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis?

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Spatial expansion of root hemiparasitic Pedicularis kansuensis in Bayanbulak Grassland of Xinjiang Uygur Autonomous Region (China) has caused great loss of herbage yield and has threatened the local livestock industry. Current management practices using manual eradication and chemical control have been proved problematic. Arbuscular mycorrhizal (AM) fungi have been suggested to be potential biocontrol agents against a number of plant pests, but experimental evidence is lacking against weedy P. kansuensis. In this study, we tested the hypothesis that inoculation with AM fungi will cause growth depression in P. kansuensis and reduce its damage to host plants. Based on the confirmation of AM status and host community of the hemiparasite in the field, a pot cultivation experiment was conducted to test the influence of an AM fungus (Glomus mosseae) on growth of P. kansuensis and the parasitized host (Elymus nutans). AM colonization was observed in roots of P. kansuensis, but the levels were much lower than those of its adjacent host species. A negative correlation between AM levels and the numbers of haustoria was detected for the field samples of the hemiparasite. Strong suppression of haustorium formation, a significant reduction in plant dry weight (DW), as well as marked reduction in the survival rate of P. kansuensis after inoculation with AM fungi was observed. In contrast, inoculation with G. mosseae increased root DW and whole plant DW of parasitized host plants. Our findings demonstrated significantly repressive effects of AM fungi on growth performance of P. kansuensis with and without the presence of a host. The potential of AM fungi as biocontrol agents against the damaging hemiparasite was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akhtar MS, Panwar J (2013) Efficacy of root-associated fungi and PGPR on the growth of Pisum sativum (cv. Arkil) and reproduction of the root-knot nematode Meloidogyne incognita. J Basic Microb 53:318–326

    Article  CAS  Google Scholar 

  • Aly R (2012) Advanced technologies for parasitic weed control. Weed Sci 60:290–294. doi:10.1614/ws-d-11-00066.1

    Article  CAS  Google Scholar 

  • Atsatt PR (1973) Parasitic flowering plants—how did they evolve. Am Nat 107:502–510. doi:10.1086/282853

    Article  Google Scholar 

  • Bao GS, Wang HS (2011) Allelopathic effects of Pedicularis kansuensis Maxim. on several graminaceous grass species on alpine meadow. Chin J Grassl 33:88–94 (in Chinese)

    Google Scholar 

  • Borowicz VA, Armstrong JE (2012) Resource limitation and the role of a hemiparasite on a restored prairie. Oecologia 169:783–792. doi:10.1007/s00442-011-2222-7

    Article  PubMed  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304. doi:10.1046/j.1469-8137.2002.00397.x

    Article  Google Scholar 

  • Davies DM, Graves JD (1998) Interactions between arbuscular mycorrhizal fungi and the hemiparasitic angiosperm Rhinanthus minor during co-infection of a host. New Phytol 139:555–563

    Article  Google Scholar 

  • Grewell BJ (2008) Parasite facilitates plant species coexistence in a coastal wetland. Ecology 89:1481–1488. doi:10.1890/07-0896.1

    Article  PubMed  Google Scholar 

  • Gworgwor NA, Weber HC (2003) Arbuscular mycorrhizal fungi–parasite–host interaction for the control of Striga hermonthica (Del.) Benth. in sorghum Sorghum bicolor (L.) Moench. Mycorrhiza 13:277–281. doi:10.1007/s00572-003-0238-5

    Article  PubMed  Google Scholar 

  • Hautier Y, Hector A, Vojtech E, Purves D, Turnbull LA (2010) Modelling the growth of parasitic plants. J Ecol 98:857–866. doi:10.1111/j.1365-2745.2010.01657.x

    Article  Google Scholar 

  • Hearne SJ (2009) Control—the Striga conundrum. Pest Manage Sci 65:603–614. doi:10.1002/ps.1735

    Article  CAS  Google Scholar 

  • Hedberg AM, Borowicz VA, Armstrong JE (2005) Interactions between a hemiparasitic plant, Pedicularis canadensis L. (Orobanchaceae), and members of a tallgrass prairie community. J Torrey Bot Soc 132:401–410

    Article  Google Scholar 

  • Hellström K, Bullock JM, Pywell RF (2011) Testing the generality of hemiparasitic plant effects on mesotrophic grasslands: a multi-site experiment. Basic Appl Ecol 12:235–243. doi:10.1016/j.baae.2011.02.010

    Article  Google Scholar 

  • Irving LJ, Cameron DD (2009) You are what you eat: interactions between root parasitic plants and their hosts. Adv Bot Res 50:87–138. doi:10.1016/s0065-2296(08)00803-3

    Article  CAS  Google Scholar 

  • Jiang F, Jeschke WD, Hartung W (2003) Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare. J Exp Bot 54:1985–1993. doi:10.1093/Jxb/Erg212

    Article  CAS  PubMed  Google Scholar 

  • Lendzemo VW, Kuyper TW (2001) Effects of arbuscular mycorrhizal fungi on damage by Striga hermonthica on two contrasting cultivars of sorghum, Sorghum bicolor. Agric Ecosyst Environ 87:29–35. doi:10.1016/S0167-8809(00)00293-0

    Article  Google Scholar 

  • Lendzemo VW, Kuyper TW, Kropff MJ, van Ast A (2005) Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crop Res 91:51–61. doi:10.1016/j.fcr.2004.05.003

    Article  Google Scholar 

  • Lendzemo VW, van Ast A, Kuyper TW (2006) Can arbuscular mycorrhizal fungi contribute to Striga management on cereals in Africa? Outlook Agric 35:307–311

    Article  Google Scholar 

  • Li AR, Smith FA, Smith SE, Guan KY (2012a) Two sympatric root hemiparasitic Pedicularis species differ in host dependency and selectivity under phosphorus limitation. Funct Plant Biol 39:784–794. doi:10.1071/fp12159

    Article  Google Scholar 

  • Li AR, Guan KY, Stonor R, Smith SE, Smith FA (2013) Direct and indirect influences of arbuscular mycorrhizal fungi on phosphorus uptake by two root hemiparasitic Pedicularis species: do the fungal partners matter at low colonization levels? Ann Bot. doi:10.1093/aob/mct177

    PubMed Central  Google Scholar 

  • Li AR, Smith SE, Smith FA, Guan KY (2012b) Inoculation with arbuscular mycorrhizal fungi suppresses initiation of haustoria in the root hemiparasite Pedicularis tricolor. Ann Bot 109:1075–1080. doi:10.1093/aob/mcs028

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu YY, Hu YK, Yu JM, Li KH, Gao GG, Wang X (2008) Study on harmfulness of Pedicularis verticillata and its control measures. Arid Zone Res 25:778–782 (in Chinese)

    Google Scholar 

  • Louarn J, Carbonne F, Delavault P, Becard G, Rochange S (2012) Reduced germination of Orobanche cumana seeds in the presence of arbuscular mycorrhizal fungi or their exudates. Plos ONE 7(11):e49273. doi:10.1371/journal.pone.0049273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Magda D, Duru M, Theau JP (2004) Defining management rules for grasslands using weed demographic characteristics. Weed Sci 52:339–345

    Article  CAS  Google Scholar 

  • Matthies D (1997) Parasite–host interactions in Castilleja and Orthocarpus. Can J Bot 75:1252–1260

    Article  Google Scholar 

  • Mcgonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mill RR (2001) Notes relating to the Flora of Bhutan: XLIII. Scrophulariaceae (Pedicularis) Edinburgh J Bot 58:57–98

    Google Scholar 

  • Phoenix GK, Press MC (2005) Linking physiological traits to impacts on community structure and function: the role of root hemiparasitic Orobanchaceae (ex-Scrophulariaceae). J Ecol 93:67–78. doi:10.1111/j.1365-2745.2004.00950.x

    Article  Google Scholar 

  • Ren YQ, Guan KY, Li AR, Hu XJ, Zhang L (2010) Host dependence and preference of the root hemiparasite, Pedicularis cephalantha Franch. (Orobanchaceae). Folia Geobot 45:443–455. doi:10.1007/s12224-010-9081-6

    Article  Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Song ZS (2006) It is an urgent task to recovery and comprehensively manage the grassland ecology of Bayingbuluke. Chin J Agric Resour Reg 27:21–25 (in Chinese)

    Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    Article  PubMed Central  PubMed  Google Scholar 

  • Vos C, Geerinckx K, Mkandawire R, Panis B, De Waele D, Elsen A (2012) Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza 22:157–163. doi:10.1007/s00572-011-0422-y

    Article  PubMed  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Wang WL, Wang JY, Chen AL, Hu YK, Liu YY (2010) Study of Pedicularis verticillata's chemical control. Xinjiang Agric Sci 47:1242–1247 (in Chinese)

    CAS  Google Scholar 

  • Wang WX, Sang GJ, Li L (2009) Study on the control techniques of poisonous grass Pedicularis in Xinjiang Bayanbulak Praire. Grass Feeding Livest 2:49–50

    CAS  Google Scholar 

  • Yang HB, Holmgren NH, Mill RR (1998) Pedicularis L. In: Wu ZY, Raven PH (eds) Flora of China, vol 18. Beijing & Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Yoder JI, Gunathilake PC, Jamison-McClung D (2009) Hemiparasitic plants: exploiting their host's inherent nature to talk. In: Baluska F (ed) Plant–environment interactions: from sensory plant biology to active plant behavior. Signaling and Communication in Plants, pp 85–100. doi:10.1007/978-3-540-89230-4_5

  • Zhang XY, Hu YK, Ji CD, Guo ZG, Gong YM (2009) Studies of chemical control of Pedicularis verticilata with 2,4-d butyl ester and the effect on grassland vegetation. Acta Pratacult Sin 18:168–174 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Yongquan Ren for his inspiring discussion for writing up the paper. We are grateful to Prof. Sally Smith and Prof. Andrew Smith from the University of Adelaide, as well as the anonymous reviewers, for their valuable comments and suggestions to improve the paper. The research was financially supported by the Natural Science Foundation of China (grant nos. 30970288 and 31370512), Natural Science Foundation of Yunnan Province (grant no. 2009CD114), and Youth Innovation Promotion Association of Chinese Academy of Sciences (CAS), and a research fund (NO. P2012-KF03) from the Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Rong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, XL., Li, AR., Chen, Y. et al. Arbuscular mycorrhizal fungi: potential biocontrol agents against the damaging root hemiparasite Pedicularis kansuensis?. Mycorrhiza 24, 187–195 (2014). https://doi.org/10.1007/s00572-013-0528-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0528-5

Keywords

Navigation