Skip to main content
Log in

Nickel remediation by AM-colonized sunflower

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

This greenhouse study aimed to examine the contribution of arbuscular mycorrhizal (AM) colonization on the uptake of and tolerance to nickel (Ni) in sunflower (Helianthus annuus L.). We hypothesized that AM colonization increases Ni content and tolerance in sunflower grown under varying soil Ni concentrations. The combined effect of AM colonization and soil Ni input on the assimilation of nitrogen, in particular the activity of glutamine synthetase (GS), in sunflower plants was also investigated. A factorial experimental design was performed with sunflower cv. Lemon Queen, with or without the AM fungus, Glomus intraradices Schenck & Smith, and treated with 0, 100, 200, or 400 mg Ni kg−1 dry soil (DS). The AM colonization significantly enhanced plant growth and Ni content, especially at the lower soil Ni treatments. Furthermore, the AM plants exposed to the highest soil Ni level of 400 mg Ni kg−1 DS had a significantly higher shoot Ni extracted percentage than non-AM plants, suggesting that the AM symbiosis contributed to Ni uptake, then its translocation from roots to shoots. The AM colonization also significantly increased the GS activity in roots, this being likely an indicator of an enhanced Ni tolerance. These findings support the hypothesis that AM symbiosis contributes to an enhanced Ni plant uptake and tolerance and should be considered as part of phytoremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahonen-Jonnarth U, Finlay RD (2001) Effects of elevated nickel and cadmium concentrations on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Plant Soil 236:129–138

    Article  CAS  Google Scholar 

  • Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ plants grown in zinc-contaminated soil. Mycorrhiza 16:277–283

    Article  CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237

    Article  CAS  PubMed  Google Scholar 

  • Audet P, Charest C (2008) Allocation plasticity and plant–metal partitioning: metal-analytical perspectives in phytoremediation. Environ Pollut 156:290–296

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Baker AJM (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exper Bot 56:1343–1349

    Article  CAS  Google Scholar 

  • Chen B, Christie P, Li X (2001) A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42:185–192

    Article  CAS  PubMed  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotech 13:393–397

    Article  CAS  Google Scholar 

  • Dalpé Y (1993) Vesicular–arbuscular mycorrhizae. In: Carter MR (ed) Soil sampling and methods of analysis. CRC, Boca Raton, pp 287–301

    Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2002) Mycorrhizal fungi increase chromium uptake by sunflower plants: influence on tissue mineral concentration, growth, and gas exchange. J Plant Nutr 25:2389–2407

    Article  CAS  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular–arbuscular mycorrhizal infection and heavy metals in plants: the effects of heavy metals on the development of vesicular–arbuscular mycorrhizae. New Phytol 95:147–161

    Article  Google Scholar 

  • Hewitt EJ, Smith TA (1975) Plant mineral nutrition. Wiley, New York, pp 32–33

    Google Scholar 

  • Insightful Corp. (2003) S-Plus 6.2 for Windows. Insightful Corp., Seattle

    Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Jones MD, Hutchinson TC (1988) Nickel toxicity in mycorrhizal birch seedlings infected with Lactarius rufus or Scleroderma flavidum. Uptake of nickel, calcium, magnesium, phosphorus and iron. New Phytol 108:461–470

    Article  CAS  Google Scholar 

  • Kastori P, Petrovic N, Petrovic M (1996) Effects of lead on water relations, proline concentration and nitrate reductase activity in sunflower plants. Acta Agron Hungar 44:21–28

    CAS  Google Scholar 

  • Killham K, Firestone MK (1983) Vesicular arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48

    Article  CAS  Google Scholar 

  • Krämer U, Smith RD, Wenzel WW, Raskin I, Salt DE (1997) The role of metal transport and tolerance in nickel hyperaccumulation by Thlaspi goesingense Hálácsy. Plant Physiol 115:1641–1650

    PubMed  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-hyperaccumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  Google Scholar 

  • Leopold I, Günther D, Schmidt J, Neumann D (1999) Phytochelatins and heavy metal tolerance. Phytochemistry 50:1323–1328

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li YM, Chaney R, Brewer E, Roseberg R, Angle JS, Baker A, Reeves R, Nelkin J (2003) Development of a technology for commercial phytoextraction of nickel: economic and technical considerations. Plant Soil 249:107–115

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants, 2nd edn. Academic, London

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Reeves RD, Macfarlane RM, Brooks RR (1983) Accumulation of nickel and zinc by western North American genera containing serpentine-tolerant species. Amer J Bot 70:1297–1303

    Article  CAS  Google Scholar 

  • Saber NE, Abdel-Moneim AM, Barakat SY (1999) Role of organic acids in sunflower tolerance to heavy metals. Biol Planta 42:65–73

    Article  CAS  Google Scholar 

  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH (1998) Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry 47:339–347

    Article  CAS  PubMed  Google Scholar 

  • Slivinskaya RB (1991) Nickel effect on sunflower leaf cell membranes. Acta Bot Neerl 40:133–138

    CAS  Google Scholar 

  • Toussaint JP, St-Arnaud M, Charest C (2004) Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L in an in vitro compartmented system. Can J Microbiol 50:251–260

    Article  CAS  PubMed  Google Scholar 

  • Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154

    Article  CAS  PubMed  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Ximénez-Embún P, Alonso I, Madrid-Albarrán Y, Cámara C (2004) Establishment of selenium uptake and species distribution in lupine, Indian mustard, and sunflower plants. J Agric Food Chem 52:832–838

    Article  PubMed  Google Scholar 

  • Yang XH, Brooks RR, Jaffré T, Lee J (1985) Elemental levels and relationships in the Flacourtiaceae of New Caledonia and their significance for the evaluation of the ‘serpentine problem’. Plant Soil 87:281–291

    Article  CAS  Google Scholar 

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower. Plant Soil 208:221–226

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by a grant of the Natural Science and Engineering Research Council of Canada to C. Charest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Charest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ker, K., Charest, C. Nickel remediation by AM-colonized sunflower. Mycorrhiza 20, 399–406 (2010). https://doi.org/10.1007/s00572-009-0293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0293-7

Keywords

Navigation