Skip to main content
Log in

Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition

Mycorrhiza Aims and scope Submit manuscript

Abstract.

Energy-dispersive X-ray microanalytical investigations and microautoradiographic studies were carried out to examine whether the uptake and transfer of phosphate (P) by an ectomycorrhizal fungus is affected by the carbohydrate supply of its host plant. For this purpose, non-mycorrhizal seedlings of Pinus sylvestris L. and plants inoculated with the ectomycorrhizal basidiomycete Suillus bovinus (L. ex Fr.) Kuntze were placed in the dark for 7 days in advance of a P supply. The subcellular element distribution and the uptake and distribution of 33P was analyzed in non-mycorrhizal and mycorrhizal roots of these plants and compared with plants kept constantly under normal light conditions (control plants). The results show that placing non-mycorrhizal plants in the dark in advance of the nutrient supply led to (1) a reduction of the subcellular contents of P, S and K, but to an increase in the cytoplasmic Na content, and (2) an increase of 33P absorption and translocation to the shoot. It can be assumed that this increased inflow of 33P in non-mycorrhizal plants was due to P starvation after suppressed photosynthesis and reduced respiration of these plants. The suppression of photosynthesis by an ectomycorrhizal host plant and the resulting lower carbohydrate supply conditions for the ectomycorrhizal fungus led to (1) a decrease of P absorption by the mycobiont, (2) a change of the P allocation in the fungal cell compartments of an ectomycorrhizal root, and (3) a reduction of P transfer to the host plant. However, microautoradiographic studies revealed that, under these conditions, P was also absorbed by the mycorrhizal fungus and translocated via the Hartig net to the host plant. In mycorrhizal roots of plants placed in the dark in advance of the nutrient supply, the cytoplasmic P content of the Hartig net was reduced and, instead, a high number of polyphosphate granules could be detected within the hyphae. The results indicate that the exchange processes between the symbionts in a mycorrhiza are possibly linked and that P uptake and translocation by an ectomycorrhizal fungus is also regulated by the carbohydrate supply of its host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bücking, .H., Heyser, .W. Uptake and transfer of nutrients in ectomycorrhizal associations: interactions between photosynthesis and phosphate nutrition. Mycorrhiza 13, 59–68 (2003). https://doi.org/10.1007/s00572-002-0196-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-002-0196-3

Navigation