Skip to main content
Log in

Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A 1D photonic crystal based biosensor is explored for effective sensing of sucrose concentration in an aqueous solution. The proposed structure is realized with SOI based LiNbO3–air–LiNbO3 configuration, where thickness of LiNbO3 and air layer are considered as 650 nm and 350 nm respectively. Reflected light energy from the structure is computed through analysis of a photonic band gap (PBG) by employing finite difference time domain technique. Simulations are carried out for investigation of shifts in reflected wavelength, PBG edges, PBG width, diffraction loss, reflected light energy, transmitted light energy, sensitivity and limit of detection (LOD) with reference to various sucrose concentrations. From the comparative analysis of vital sensing parameters with the existing researches, the proposed photonic sensor shows better sensitivity and low LOD which is suitable for bio sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Amiri IS, Yupapin P, Palai G (2019) Estimation of concentration of DNA and protein through PARD and modified analysis: a realization of an accurate biomedical device using photonic structure. Optik 182:507–511

    Google Scholar 

  • Arizmendi L (2017) Photonic applications of lithium niobate crystals. Phys Stat Sol 201:253–283

    Google Scholar 

  • Armenise MN, Campanella CE, Ciminelli C, Olio FD, Passaro VMN (2010) Phononic and photonic band gap structures: modelling and applications. Phys Procedia 3:357–364

    Google Scholar 

  • Ayyanar N et al (2018) Enhanced sensitivity of hemoglobin sensor using dual-core photonic crystal fiber. Opt Quantum Electron 50:453

    Google Scholar 

  • Bernal MP, Roussey M, Baida F, Benchabane S, Khelif A, Laude V (2009) Photonic and phononic band Gap properties of lithium niobate, ferroelectric crystals for photonic applications. Springer series in materials science. Springer, Berlin

    Google Scholar 

  • Buswell SC, Wright VA, Buriak JM, Van V, Evoy S (2008) Specific detection of proteins using photonic crystal waveguides. Opt Express 16:15949–15957

    Google Scholar 

  • Caballero B (2003) Encyclopedia of food sciences and nutrition, 2nd edn. ISBN: 978-0-12-227055-0

  • Chen HL, Lee HF, Chao WC, Hsieh CI, Ko FH (2004) Fabrication of autocloned photonic crystals by using high-density-plasmachemical vapor deposition. Vac Sci Technol B 22:3359

    Google Scholar 

  • Chen W et al (2016) Molecular imprinted photonic crystal for sensing of biomolecules. De Gruyter 4:1–12

    Google Scholar 

  • Chhoker P, Bajaj S (2015) Analysis of photonic band structure in 1-D photonic crystal using PWE and FDTD Method. IJISET Int J Innov Sci Eng Technol 2:883–887

    Google Scholar 

  • Chow E, Grot A, Mirkarimi LW, Sigalas M, Girolami G (2004) Ultracompact biochemical sensor built with two-dimensionalphotonic crystal microcavity. Opt Lett 29:1093–1095

    Google Scholar 

  • Christoph F et al (2015) Photonic crystal based sensing scheme for acetylchloline and acetylcholinesterase inhibitors. J Mater Chem B 3:2089–2095

    Google Scholar 

  • Colinge JP (1991) Silicon-on-insulator technology: materials to VLSI. Kluwer Academic, Boston

    Google Scholar 

  • Desmond M, Sandoghchi SR, Adikan RM (2012) Fabrication of photonic crystal fibers. In: 3rd international conference on photonics (ICP 2012), Penang, Malaysia, pp 227–230. https://doi.org/10.1109/ICP.2012.6379830

  • Dorfner D et al (2009) Photonic crystal nanostructures for optical biosensing applications. Biosens Bioelectron 24:3688–3692

    Google Scholar 

  • El HH, Laurent B, Geraud B, Igor R, Mohamed B, Bruno C (2011) From molecular precursors in solution to microstructured optical fiber: a sol–gel polymeric route. Opt Mater Express 1:234–242

    Google Scholar 

  • Fischer U, Zinke T, Petermann K (1995) Integrated optical waveguide switches in SOI. In: 1995 IEEE international SOI conference proceedings, Tucson, AZ, USA, pp 141–142. https://doi.org/10.1109/SOI.1995.526500

  • Frischeisen J, Mayr C, Reinke NA, Nowy S, Brütting W (2008) Surface plasmon resonance sensor utilizing an integrated organic light emitting diode. Opt Express 16:18426–18436

    Google Scholar 

  • Ge C et al (2013) External cavity laser biosensor. Lab Chip 13:1247–1256

    Google Scholar 

  • Geiss R et al (2011) Transmission properties of a free-standing lithium niobate photonic crystal waveguide. In: CLEO: 2011—Laser science to photonic applications, Baltimore, MD, USA, pp 1–2. https://doi.org/10.1364/CLEO_SI.2011.CFI4

  • Huaizhong S, Zhanhua WW, Yuxin YB (2016) One-dimensional photonic crystals: fabrication, responsiveness and emerging applications in 3D construction. RSC Adv 6:4505–4520

    Google Scholar 

  • Hugo S et al (1991) Light scattering in lntralipid-10% in the wavelength range of 400–1100 nm. Appl Opt 30:4507–4514

    Google Scholar 

  • Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 43:6042–6108

    Google Scholar 

  • Langer R, Barski A, Simon J, Pelekanos NT, Konovalov O, Andre R, Dang LS (1999) High-reflectivity GaN/GaAlN Bragg mirrors at blue/green wavelengths grown by molecular beam epitaxy. Appl Phys Lett 74:3610–3612

    Google Scholar 

  • Liang H, Luo R, He Y, Jiang H, Lin Q (2017) High-quality lithium niobate photonic crystal nanocavities. Optica 4:1251–1258

    Google Scholar 

  • Manpreet C, Chetan S (2014) Design of a photonic crystal biosensor using DNA filled microcavity and ring cavity coupled with waveguide. In: 2014 international conference on signal propagation and computer technology (ICSPCT 2014), Ajmer, India, pp 342–345. https://doi.org/10.1109/ICSPCT.2014.6885026

  • Nayak C, Palai G, Sarkar P (2016) Investigation of mole fraction in nitride semiconductor using photonic bandgap analysis. Optik 127:697–699

    Google Scholar 

  • Palai G, Kisan S, Das A (2018) A proposal for bio-medical device to measure GUS in human blood using metamaterial. Optik 164:138–142

    Google Scholar 

  • Panda A, Pukhrambam PD (2020) Photonic crystal biosensor for refractive index based cancerous cell detection. Opt Fiber Technol 54:102123

    Google Scholar 

  • Panda A, Mishra CS, Palai G (2016a) PWE approach to optical thyristor for investigation of doping concentration. Optik 127:4831–4833

    Google Scholar 

  • Panda A, Sarkar P, Palai G (2016b) Studies on temperature variation in semiconductor waveguide through ARDP loss for nanophotonic applications. Optik 127:5439–5442

    Google Scholar 

  • Panda A, Sarkar P, Palai G (2018) Research on SAD-PRD losses in semiconductor waveguide for application in photonic integrated circuits. Optik 154:748–754

    Google Scholar 

  • Panda A, Pukhrambam PD, Keiser G (2019) Realization of sucrose sensor using photonic waveguide: an application to biophotonics. In: 2019 International workshop on fiber optics in access networks (FOAN), Sarajevo, Bosnia and Herzegovina, pp 23–25. https://doi.org/10.1109/FOAN.2019.8933813

  • Penget J et al (2017) Thin films based one-dimensional photonic crystal for humidity detection. Sens Actuator A Phys 263:209–215

    Google Scholar 

  • Peters L (1993) SOI takes over where silicon leaves off. Semicond Int 16:48–51

    Google Scholar 

  • Prakash S, Sharma G, Yadav GC et al (2019) Photonic band gap alteration in LiNbO3–SiO2 Based 1D periodic multilayered structure via plate wave. Silicon 11:1783–1789

    Google Scholar 

  • Ramanujam NR et al (2019) Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst Technol 25:189–196

    Google Scholar 

  • Ravi Kanth Kumar VV, George AK, Reeves WH, Knight JC, Russell PSJ (2002) Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation. Opt Express 10:1520–1525

    Google Scholar 

  • Robinson S, Dhanlaksmi N (2016) Photonic crystal based biosensor for the detection of glucose concentration in urine. Photonic Sens. https://doi.org/10.1007/s13320-016-0347-3

    Article  Google Scholar 

  • Romain G et al (2015) Sensitivity and limit of detection of biosensors based on ring resonators. Sens Biosens Res 6:99–102

    Google Scholar 

  • Schürmann U, Takele H, Zaporojtchenko V, Faupel F (2006) Optical and electrical properties of polymer metal nanocomposites prepared by magnetron co-sputtering. Thin Solid Films 515:801–804

    Google Scholar 

  • Shaban M et al (2017) Tunability and sensing properties of plasmonic/1D photonic crystal. Sci Rep 7:41983

    Google Scholar 

  • Soref R (1998) Applications of silicon-based optoelectronics. MRS Bull 23:20–24

    Google Scholar 

  • Soref RA, Schmidtchen J, Petermann K (1991) Large single-mode rib waveguides in GeSi and Si-on-SiO2. IEEEJ Quantum Electron 27:1971–1974

    Google Scholar 

  • Sukhoivanov IA, Guryev IV (2009) Physics and practical modeling: photonic crystals. Springer, Berlin

    Google Scholar 

  • Swain KP, Nayyar A, Palai G, Tripathy SK (2020) Disseminating of bio-info with respect to different photonic crystal structure through AWS. Optik 202:163590

    Google Scholar 

  • Tamir T (ed) (1990) Guided wave optoelectronics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Tang JL, Wang JN (2008) Chemical sensing sensitivity of long-period grating sensor enhanced by colloidal gold nanoparticles. Sensors 8:171–184

    Google Scholar 

  • Tidmarsh J, Drake J (1998) Silicon-on-insulator waveguide bragg gratings. In: Integrated photonic research (IPR’98), vol 4 of OSA Technical Digest, Victoria, BC, Canada, pp 290–292

  • Wang JN, Tang JL (2012) Photonic crystal fiber Mach–Zehnder interferometer for Refractive Index sensing. Sensors 12:2983–2995

    Google Scholar 

  • Xiaoxia MA, Kaixin C, Jieyun W, Lingfang W (2020) Low-cost and highly sensitive liquid Refractive Index sensor based on polymer horizontal slot waveguide. Photonic Sens 10:7–15

    Google Scholar 

  • Yablonovitch E, Gmitter TJ (1989) Photonic band structure: the face centered-cubic case. Phys Rev Lett 63:1950–1953

    Google Scholar 

  • Yariv A, Yeh P (1984) Optical waves in crystals. Wiley, New York

    Google Scholar 

  • Yunus W (1988) Refractive index of solutions at high concentrations. Appl Opt 27:3341–3343

    Google Scholar 

  • Zelmon DE, Small DL, Jundt D (1997) Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol% magnesium oxide-doped lithium niobate. J Opt Soc Am B 14:3319–3322

    Google Scholar 

  • Zengerle R, Leminger O (1995) Phase shift bragg grating filters with improved transmission characteristics. J Light Wave Technol 13:2354–2358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abinash Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Pukhrambam, P.D. & Keiser, G. Realization of sucrose sensor using 1D photonic crystal structure vis-à-vis band gap analysis. Microsyst Technol 27, 833–842 (2021). https://doi.org/10.1007/s00542-020-05005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05005-2

Navigation