Skip to main content
Log in

Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The model of the generalized magneto-thermoelasticity with phase-lags in a perfectly conducting an infinitely long solid cylinder with variable thermal conductivity is established. The surface of the cylinder is traction free and subjected to time dependent temperature. A detailed analysis of the effects of the phase-lags, the angular frequency of thermal vibration and the variability thermal conductivity parameter on the displacement, incremental temperature, and the thermal stresses are presented. Comparisons are also made with the results predicted by the coupled theory and with the theory of generalized thermoelasticity with one relaxation time. Finally, some of the earlier results are deduced as particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abouelregal AE (2011) Fractional order generalized thermo-piezoelectric semi-infinite medium with temperature-dependent properties subjected to a ramp-type heating. J Therm Stresses 11:1139–1155

    Article  Google Scholar 

  • Abouelregal AE, Abo-Dahab SM (2012) Dual phase lag model on magneto-thermoelasticity infinite nonhomogeneous solid having a spherical cavity. J Therm Stresses 35(9):733–848

    Article  Google Scholar 

  • Abouelregal AE, Abo-Dahab SM (2014) Dual-phase-lag diffusion model for Thomson’s phenomenon on elctromagneto-thermoelastic an infinitely long solid cylinder. J Comput Theor Nanosci 11:1–9

    Article  Google Scholar 

  • Abouelregal AE, Zenkour AM (2015) Generalized thermoelastic vibration of a microbeam with an axial force. Microsyst Technol 21(7):1427–1435

    Article  Google Scholar 

  • Berman R (1953) The thermal conductivity of dielectric solids at low temperatures. Adv in Phys 2(5):103–140

    Article  Google Scholar 

  • Biot M (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27:249–253

    MATH  MathSciNet  Google Scholar 

  • Budaev OR, Ivanova MN, Damdinov BB (2003) Temperature dependence of shear elasticity of some liquids. Adv Colloid Interface Sci 104:307–310

    Article  Google Scholar 

  • El-Bary AA (2006) An infinite thermoelastic long annular cylinder with variable thermal conductivity. J Appl Sci Research 2(6):341–345

    Google Scholar 

  • Ezzat MA, Othman MIA (2002) State-space approach to generalized magneto-thermoelasticity with thermal relaxation in a medium of perfect conductivity. J Therm Stresses 25:409–429

    Article  Google Scholar 

  • Green E, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  • Honig G, Hirdes U (1984) A method for the numerical inversion of Laplace transform. J Comp Appl Math 10:113–132

    Article  MATH  MathSciNet  Google Scholar 

  • Lee ZY (2009) Magneto thermoelastic analysis of multilayered conical shells subjected to magnetic and vapor fields. Int J Therm Sci 48:50–72

    Article  Google Scholar 

  • Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  Google Scholar 

  • Noda N (1986) Thermal stresses in materials with temperature-dependent properties. Thermal stresses I, Hetnarski RB (ed), North-Holland, Amsterdam

  • Othman MIA (2002) Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional generalized thermoelasticity. J Therm Stresses 25:1027–1045

    Article  Google Scholar 

  • Othman MIA, Abbas IA (2012) Generalized thermoelsticity of thermal shock problem in a non-homo-geneous isotropic hollow cylinder with energy dissipation. Int J Thermophys 33(5):913–923

    Article  Google Scholar 

  • Othman MIA, Abbas IA (2015) Effect of rotation on a magneto-thermoelastic hollow cylinder with energy dissipation using finite element method. J Comput Theor Nanosci 12(9):2399–2404

    Article  Google Scholar 

  • Othman MIA, Atwa SY, Elwan AW (2016) The effect of phase lag and gravity field on generalized thermoelastic medium in two and three dimensions. J Comput Theor Nanosci 13(5):2827–2837

    Article  Google Scholar 

  • Rishin VV, Lyashenko BA, Akinin KG, Nadezhdin GN (1973) Temperature dependence of adhesion strength and elasticity of some resistant coatings. Strength Mater 5:123–126

    Article  Google Scholar 

  • Szuecs F, Werner M, Sussmann RS, Pickles CSJ, Frecht MJ (1999) Temperature dependence of Young’s modulus and degradation of chemical vapor deposited diamond. J Appl Phys 86:6010–6017

    Article  Google Scholar 

  • Tianhu H, Yapeng S, Xiaogeng T (2004) A two-dimensional generalized thermal shock problem for a half-space in electromagneto-thermoelasticit. Int J Eng Sci 42:809–823

    Article  MATH  Google Scholar 

  • Tzou DY (1995) A unified approach for heat conduction from macro- to micro-scales. J Heat Transfer 117:8–16

    Article  Google Scholar 

  • Tzou DY (1996) Macro-to microscale heat transfer: the lagging behavior. Taylor and Francis, Washington DC

    Google Scholar 

  • Wang X, Dong K (2006) Magnetothermodynamic stress and perturbation of magnetic field vector in a nonhomogeneous thermoelastic cylinder. Euro J Mech A/Sol 25:98–109

    Article  MATH  Google Scholar 

  • Zenkour AM, Abouelregal AE (2015) Nonlocal thermoelastic nanobeam subjected to a sinusoidal pulse heating and temperature-dependent physical properties. Microsys Techno 21:1767–1776

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed I. A. Othman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, M.I.A., Abouelregal, A.E. Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat. Microsyst Technol 23, 5635–5644 (2017). https://doi.org/10.1007/s00542-017-3357-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3357-1

Keywords

Navigation