Skip to main content
Log in

Portable signal conditioning system of a MEMS magnetic field sensor for industrial applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We present a portable signal conditioning system of a micromachined magnetic field sensor. This system, implemented on a printed circuit board, includes a new algorithm for two sinusoidal signal generators, which bias the magnetic field sensor. This algorithm uses the direct digital synthesis technique for two embedded peripheral interface microcontrollers. The magnetic field sensor consists of a resonant silicon structure (600 µm × 700 µm × 5 µm), an aluminum loop (1 µm thickness), and a Wheatstone bridge of four type-p piezoresistors. The two signal generators have a frequency stability of ±100 ppm and a resolution of 1 Hz. With this system, the magnetic field sensor has a linear approximately response in voltage mode as well as experimental sensitivity and resolution of 0.32 V T−1 and 35 nT at atmospheric pressure, respectively. A virtual instrument is designed to visualize the output voltage of the magnetic field sensor. The signal conditioning system of the sensor could be used as industrial portable equipment to detect residual magnetic fields of ferromagnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acevedo-Mijangos J, Soler-Balcázar C, Vazquez-Leal H, Martínez-Castillo J, Herrera-May AL (2013) Design and modeling of a novel microsensor to detect magnetic fields in two orthogonal directions. Microsyst Technol 19:1897–1912. doi:10.1007/s00542-013-1795-y

    Article  Google Scholar 

  • Cortés-Mestizo IE (2011) A tone generator system of a project based on MEMS technology for monitoring neuronal signals (translation style), B.S. thesis, Dept. Electron. Eng., Universidad Veracruzana, Boca del Rio, Mexico

  • Dominguez-Nicolas SM, Juárez-Aguirre R, García-Ramírez PJ, Herrera-May AL (2012) Signal conditioning system with a 4-20 mA output for a resonant magnetic field sensor based on MEMS technology. IEEE Sens J 12:935–942. doi:10.1109/JSEN.2011.2167012

    Article  Google Scholar 

  • Dominguez-Nicolas SM, Juárez-Aguirre R, Herrera-May AL, García-Ramírez PJ, Figueras E, Gutierrez E, Tapia JA, Trejo A, Manjarrez E (2013) Respiratory magnetogram detected with a MEMS device. Int J Med Sci 10:1445–1450. doi:10.7150/ijms.4732

    Article  Google Scholar 

  • Gkotsis P, Lara-Castro M, López-Huerta F, Herrera-May AL, Raskin J-P (2015) Mechanical characterization and modelling of Lorentz force based MEMS magnetic field sensors. Solid-State Electron 112:68–77. doi:10.1016/j.sse.2015.02.004

    Article  Google Scholar 

  • Guest DH (1974) Simplified data-transmission channel measurements. Hewlett Packard J 26:15–24

    Google Scholar 

  • Herrera-May AL, Aguilera-Cortés LA, García-Ramírez PJ, Manjarrez E (2009) Resonant magnetic field sensors based on MEMS technology. Sensors 9:7785–7813. doi:10.3390/s91007785

    Article  Google Scholar 

  • Herrera-May AL, García-Ramírez PJ, Aguilera-Cortés LA, Figueras E, Martínez-Castillo J, Manjarrez E, Sauceda A, García-González L, Juárez-Aguirre R (2011) Mechanical design and characterization of a resonant magnetic field microsensor with linear response and high resolution. Sens Actuators A 165:299–409. doi:10.1016/j.sna.2010.07.005

    Article  Google Scholar 

  • Herrera-May AL, Lara-Castro M, López-Huerta F, Gkotsis P, Raskin J-P, Figueras E (2015) A MEMS-based magnetic field sensor with simple resonant structure and linear electrical response. Microelectron Eng 142:12–21. doi:10.1016/j.mee.2015.06.009

    Article  Google Scholar 

  • Hosseinian E, Theillet P-O, Pierron ON (2013) Temperature and humidity effects on the quality factor of a silicon lateral rotatory micro-resonator in atmospheric air. Sens Actuators A 189:380–389. doi:10.1016/j.sna.2012.09.020

    Article  Google Scholar 

  • Hull R (1999) Properties of Crystalline Silicon. Institution of Electrical Engineers, London

    Google Scholar 

  • Juárez-Aguirre R, Domínguez-Nicolás SM, Manjarrez E, Tapia JA, Figueras E, Vázquez-Leal H, Aguilera-Cortés LA, Herrera-May AL (2013) Digital signal processing by virtual instrumentation of a MEMS magnetic field sensor for biomedical applications. Sensors 13:15068–15084. doi:10.3390/s131115068

    Article  Google Scholar 

  • Laghi G, Dellea S, Longoni A, Minotti P, Tocchio A, Zerbini S, Lagfelder G (2015) Torsional MEMS magnetometer operated off-resonance for in-plane magnetic field detection. Sens Actuators A 229:218–226. doi:10.3390/s131115068

    Article  Google Scholar 

  • Langfelder G, Dellea S, Zaraga F, Cucchie D, Urquia MA (2012) The dependence of fatigue in microelectromechanical systems on the environment and the industrial packaging. IEEE Trans Ind Electron 59:4938–4948. doi:10.1109/TIE.2011.2151824

    Article  Google Scholar 

  • Langfelder G, Buffa C, Frangi A, Tocchio A, Lasandra E, Longoni A (2013) Z-axis magnetometers for MEMS inertial measurement units using an industrial process. IEEE Trans Ind Electron 60:3983–3990. doi:10.1109/TIE.2012.2210958

    Article  Google Scholar 

  • Langfelder G, Caspani A, Tocchio A (2014) Design criteria of low-power oscillators for consumer-grade MEMS resonant sensors. IEEE Trans Ind Electron 61:567–574. doi:10.1109/TIE.2013.2247233

    Article  Google Scholar 

  • Leng J, Liu Y, Zhou G, Gao Y (2013) Metal magnetic memory signal response to plastic deformation of low carbon steel. NDT E Int 55:42–46. doi:10.1016/j.ndteint.2013.01.005

    Article  Google Scholar 

  • Li M, Rouf VT, Thompson MJ, Horsley DA (2012) Three-axis Lorentz-force magnetic sensor for electronic compass applications. J Microelectromech Syst 21:1002–1010. doi:10.1109/JMEMS.2012.2196493

    Article  Google Scholar 

  • Li M, Nitzan S, Horsey DA (2015a) Frequency-modulated Lorentz force magnetometer with enhanced sensitivity via mechanical amplification. IEEE Electron Dev Lett 36:62–64. doi:10.1109/LED.2014.2372617

    Article  Google Scholar 

  • Li M, Sonmezoglu S, Horsley DA (2015b) Extended bandwidth Lorentz force magnetometer based on quadrature frequency modulation. J Micromech Microeng 24:333–342. doi:10.1109/JMEMS.2014.2330055

    Article  Google Scholar 

  • Minotti P, Brenna S, Laghi G, Bonfanti AG, Langfelder G, Lacaita AL (2015) A Sub-400-nT/√ Hz, 775-µW, multi-loop MEMS magnetometer with integrated readout electronics. J Micromech Microeng (in press). doi:10.1109/JMEMS.2015.2452316

    Google Scholar 

  • Pierron ON, Muhlstein CL (2006) The critical role environment in fatigue damage accumulation in deep-reactive ion-etched single-crystal silicon structural films. J Microelectromech Syst 15:111–119. doi:10.1109/JMEMS.2005.863602

    Article  Google Scholar 

  • Rossel C, Bauer P, Zech D, Hofer J, Willemin M, Keller H (1996) Active microlevers as miniature torque magnetometers. J Appl Phys 79:8166. doi:10.1063/1.362550

    Article  Google Scholar 

  • Tapia JA, Herrera-May AL, García-Ramírez PJ, Martínez-Castillo J, Figueras E, Flores A, Manjarrez E (2011) Sensing magnetic flux density of artificial neurons with a MEMS device. Biomed Microdev 13:303–313. doi:10.1007/s10544-010-9494-2

    Article  Google Scholar 

  • Wilson JW, Tian GY, Barrans S (2007) Residual magnetic field sensing for stress measurement. Sens Actuators A 135:381–387. doi:10.1016/j.sna.2006.08.010

    Article  Google Scholar 

  • Yin X, Jiao Q, Yuan L, Liou S-H (2013) MEMS torsion oscillator magnetic field sensor. IEEE Trans Magn 49:3890–3892. doi:10.1109/TMAG.2013.2252153

    Article  Google Scholar 

  • Zhang W, Lee JE-Y (2014) Frequency-based magnetic field sensing Lorentz force axial strain modulation in a double-ended tuning fork. Sens Actuators A 211:145–152. doi:10.1016/j.sna.2014.01.022

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Prof. Eduard Figueras of the Microelectronics Institute of Barcelona (IMB-CNM, CSIC) for his technique support in the fabrication process of the MEMS sensor. This work was partially supported by the following Grant PROMEP 4543 EXB 468.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Herrera-May.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara-Castro, M., Herrera-May, A.L., Juarez-Aguirre, R. et al. Portable signal conditioning system of a MEMS magnetic field sensor for industrial applications. Microsyst Technol 23, 215–223 (2017). https://doi.org/10.1007/s00542-016-2816-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2816-4

Keywords

Navigation