Skip to main content
Log in

Research on the optimization method of top-drive variable-capacitance micromotors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

As a class of important MEMS devices, electrostatic micromotors can be used as a platform for developing micropumps, microgyroscopes, micro propeller, and micro medical tools etc. The researches about the electrostatic micromotors in the past twenty years were mainly focused on the actuation principle and fabrication technics. In this paper, the optimal design method for top-drive variable capacitance electrostatic micromotors (TDVCM) is investigated and an analytical model for calculating the output torque of the TDVCM is presented. Using the analytical model, the design parameters of TDVCM can be optimized without the finite element analysis, such that the design procedure has better efficiency in calculation time. In order to verify the numerical calculation accuracy of the method proposed in this paper, the optimizing procedure of an 8/6 TDVCM with various kinds of simple excitation schemes is presented, and the optimization results are verified by the finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Bachmann D, Hierold C (2008) Determination of the pull-off forces and pull-off dynamics of an electrostatically actuated silicon disk. IEEE J Microelectromech Syst 17(3):643–652

    Article  Google Scholar 

  • Behjat V, Vahedi A (2006) Study the influence of geometric parameters on the torque of electrostatic micromotors. Electr Eng 89:61–65

    Article  Google Scholar 

  • Ghalichechian N, Modafe A, Beyaz MI, Ghodssi R (2008) Design, fabrication, and characterization of a rotary micromotor supported on microball bearings. IEEE J Microelectromech Syst 17(3):632–642

    Article  Google Scholar 

  • Han F, Qiuping W, Zhang R, Dong J (2009) Capacitive sensor interface for an electrostaically levitated micromotor. IEEE Trans Instrum Meas 58(10):3519–3526

    Article  Google Scholar 

  • Huang X, Chen W, Liu W, Zhang W, Wu X (2007) High resolution differential capacitance detection scheme for micro levitated rotor gyroscope. Chin J Aeronaut 20:546–551

    Article  Google Scholar 

  • Johansson TB, Van Dessel M, Belmans R, Geysen W (1994) Technique for finding the optimum geometry of electrostatic micromotors. IEEE Trans Ind Appl 30(4):912–919

    Article  Google Scholar 

  • Judy JW (2001) Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Mater Struct 10:1115–1134

    Article  Google Scholar 

  • Ketabi A, Javad NM (2011) Optimization of variable-capacitance micromotors using genetic algorithm. IEEE J Microelectromech Syst 20(2):497–504

    Article  Google Scholar 

  • Laser DJ, Santigo JG (2004) A review of micropump. J Micromech Microeng 14(6):35–64

    Article  Google Scholar 

  • Legtenberg R, Berenschot E, van Baar J, Elwenspoek M (1998a) An electrostatic lower stator axial-gap polysilicon wobble motor Part I: design and modeling. IEEE J Microelectromech Syst 7(1):79–86

    Article  Google Scholar 

  • Legtenberg R, Berenschot E, van Baar J, Elwenspoek M (1998b) An Electrostatic Lower Stator Axial-Gap Polysilicon Wobble Motor Part II: Fabrication and Performance. IEEE J Microelectromech Syst 7(1):87–93

    Article  Google Scholar 

  • Livermore C, Forte AR, Lyszczarz T, Umans SD, Ayon AA, Lang JH (2004) A high-power MEMS electric induction motor. IEEE J Microelectromech Syst 13(3):465–471

    Article  Google Scholar 

  • Mehregany M, Tai YC (1991) Surface micromachined mechanisms and micromotors. J Micromech Microeng 1:73–85

    Article  Google Scholar 

  • Nagle SF, Livermore C, Frechette LG, Ghodssi R, Lang JH (2005) An electric induction micromotor. IEEE J Microelectromech Syst 14(5):1127–1143

    Article  Google Scholar 

  • Quagliarella D, Periaux J, Poloni C, Winter G (1998) Genetic algorithms and evolution strategy in engineering and computer science. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Rebello KJ (2004) Applications of MEMS in surgery. Proceeding of the IEEE 92(1):43–55

    Article  Google Scholar 

  • Stephen DS (1998) CAD challenges for microsensors, microactuators, and microsystems. Proc IEEE 86(8):1611–1626

    Article  MathSciNet  Google Scholar 

  • Xiaoyu W, Linghui Y, Song X (2011) Research on micro-electro-mechanical system computer aided design, International Conference on Electronical Engineering and Information Technology, 1556–1559

  • Zhang W, Meng G, Li H (2005) Electrostatic micromotor and its reliability. Microelectron Reliab 45:1230–1242

    Article  Google Scholar 

  • Zhang WM, Meng G, Chen D (2007) Stability, nonlinearity and reliability of Electrostaicaly actuated MEMS devices. Sensors 7:760–796

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by Nature Science Foundation of China (No. 50975004, No.51305005, No. 51375016) and Beijing Nature Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangping He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Zhao, Q. & Geng, Z. Research on the optimization method of top-drive variable-capacitance micromotors. Microsyst Technol 21, 2443–2453 (2015). https://doi.org/10.1007/s00542-014-2348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2348-8

Keywords

Navigation