Skip to main content
Log in

High aspect ratio gold nanopillars on microelectrodes for neural interfaces

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Microelectrode arrays (MEA) have become an established tool in applied and fundamental research. Low impedance at the interface between tissue and conducting electrodes is of utmost importance for the electrical recording or stimulation of electrophysiological active cells such as cardiac myocytes and neurons. A common way to improve this interface is to increase the electrochemically active surface area of the electrode. In this paper the fabrication of microelectrodes covered with very high aspect ratio (AR > 100) gold nanopillars is presented and electrode biocompatibility is investigated using cell culture experiments. The nanopillar electrodes show decreased impedance over the entire scanned frequency range of 1 Hz–100 kHz and an impedance improvement of up to 89.5 at 1 kHz depending on nanopillar height. Neurons adhere well to the substrate and electrodes and signals with amplitudes up to ten times higher than with conventional gold electrodes were recorded in cell culture experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrigan D (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129(12):1157–1165

    Article  Google Scholar 

  • Bates JB, Chu YT, Stribling WT (1988) Surface topography and impedance of metal-electrolyte interfaces. Phys Rev Lett 60(7):627–630

    Article  Google Scholar 

  • Bauerdick S, Burkhardt C, Kern D, Nisch W (2003) Substrate-integrated microelectrodes with improved charge transfer capacity by 3-dimensional micro-fabrication. Biomed Microdevices 5(2):93–99

    Article  Google Scholar 

  • Bond A, Oldham K, Zoski C (1988) Theory of electrochemical processes at an inlaid disc microelectrode under steady-state conditions. J Electroanal Chem Interfacial Electrochem 245(1):71–104

    Article  Google Scholar 

  • Braet F, De Zanger R, Wisse E (2003) Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells. J. microscopy 186(1):84–87

    Article  Google Scholar 

  • Bray D, Bagu J, Koegler P (1993) Comparison of hexamethyldisilazane (HMDS), Peldri II, and critical-point drying methods for scanning electron microscopy of biological specimens. Microsc Res Tech 26(6):489–495

    Article  Google Scholar 

  • Brüggemann D, Wolfrum B, Maybeck V, Mourzina Y, Jansen M, Offenhäusser A (2011) Nanostructured gold microelectrodes for extracellular recording from electrogenic cells. Nanotechnology 22:265104

    Article  Google Scholar 

  • Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications, World Scientific Publishing Company

  • Cogan S (2008) Neural stimulation and recording electrodes. Annu Rev Biomed Eng 10:275–309

    Article  Google Scholar 

  • Dassinger F, Quednau S, Greiner F, Schlaak H, Hottes M, Stegmann C, Rauber M, Ensinger W, Trautmann C (2011) Einsatz von integrierten nanostrukturen in mikrosystemen, in Mikro-Nano-Integration Kongress, 12.Nov–13.Nov, VDE VERLAG GMBH, Berlin

  • Daus A, Layer P, Thielemann C (2012) A spheroid-based biosensor for the label-free detection of drug-induced field potential alterations. Sens Actuators B: Chemical 165(1):53–58

    Article  Google Scholar 

  • Enzel P, Zoller J, Bein T (1992) Intrazeolite assembly and pyrolysis of polyacrylonitrile. J Chem Soc 8:633–635

    Google Scholar 

  • Fan S, Chapline M, Franklin N, Tombler T, Cassell A, Dai H (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401):512–514

    Article  Google Scholar 

  • Foss CA Jr, Hornyak G, Stockert J, Martin C (1992) Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J Phys Chem 96(19):7497–7499

    Article  Google Scholar 

  • Gesteland R, Howland B, Lettvin J, Pitts W (1959) Comments on microelectrodes. Proceedings of the IRE 47(11):1856–1862

    Article  Google Scholar 

  • Hulteen J, Martin C (1997) A general template-based method for the preparation of nanomaterials. J Mater Chem 7(7):1075–1087

    Article  Google Scholar 

  • Ivorra A, Genescà M, Sola A, Palacios L, Villa R, Hotter G, Aguilo J (2005) Bioimpedance dispersion width as a parameter to monitor living tissues. Physiol Meas 26:1–9

    Article  Google Scholar 

  • Kerner Z, Pajkossy T (2000) On the origin of capacitance dispersion of rough electrodes. Electrochim Acta 46(2–3):207–211

    Article  Google Scholar 

  • Kovacs G (1994) Microelectrode models for neural interfaces. In: Stenger D, McKenna T (eds) Enabling technologies for cultured neural networks. Academic Press, New York, pp 121–165

    Google Scholar 

  • Kuffler S, Nicholls J, A Robert M (1976) From neuron to brain: a cellular approach to the function of the nervous system, Sinauer associates

  • Liu SH (1985) Fractal model for the ac response of a rough interface. Phys Rev Lett 55(5):529–532

    Article  Google Scholar 

  • Liu C, Bi Q, Matthews A (2001) EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corros Sci 43(10):1953–1961

    Article  Google Scholar 

  • Lu Y, Yang M, Qu F, Shen G, Yu R (2007) Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry 71(2):211–216

    Article  Google Scholar 

  • Martin C (1996) Membrane-based synthesis of nanomaterials. Chem Mat 8(8):1739–1746

    Article  Google Scholar 

  • Masuda H, Fukuda K (1995) Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268(5216):1466–1468

    Article  Google Scholar 

  • Nguyen-Vu B, Chen H, Cassell AM, Andrews R, Meyyappan M, Li J (2006) Vertically aligned carbon nanofiber arrays: an advance toward electrical-neural interfaces. Small 2(1):89–94

    Article  Google Scholar 

  • Nguyen-Vu B, Chen H, Cassell A, Andrews R, Meyyappan M, Li J (2007) Vertically aligned carbon nanofiber architecture as a multifunctional 3-d neural electrical interface. IEEE Trans Biomed Eng 54(6 Pt 1):1121–1128

    Article  Google Scholar 

  • Nick C, Joshi R, Schneider J, Thielemann C (2012) Three-dimensional carbon nanotube electrodes for extracellular recording of cardiac myocytes. Biointerphases 7(1–4):58–64

    Google Scholar 

  • Nick C, Goldhammer M, Bestel R, Steger F, Daus A, Thielemann C (2013) Drcell—a software tool for the analysis of cell signals recorded with extracellular microelectrodes, accepted

  • Norlin A, Pan J, Leygraf C (2005) Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications. J Electrochem Soc 152(2):7–15

    Article  Google Scholar 

  • Oldham K, Zoski C (1988) Comparison of voltammetric steady states at hemispherical and disc microelectrodes. J Electroanal Chem Interfacial Electrochem 256(1):11–19

    Article  Google Scholar 

  • Pajkossy T (1991) Electrochemistry at fractal surfaces. J Electroanal Chem Interfacial Electrochem 30(1–2):1–11

    Article  Google Scholar 

  • Possin G (1970) A method for forming very small diameter wires. Rev Sci Instrum 41(5):772–774

    Article  Google Scholar 

  • Quednau S and Schlaak H (2011) Strukturierte herstellung und in situ-erzeugung von metallischen mikro- und nanodrähten in mikrosystemen, in Mikrosystemtechnik Kongress, 11.Oct–12.Oct, VDE VERLAG GMBH, Darmstadt, Germany

  • Shang H and Cao G (2010) Template-based synthesis of nanorod or nanowire arrays. Springer Handbook Nanotechology pp 169–186

  • Stern O (1924) Zur theorie der elektrolytischen doppelschicht, Z. Elektrochem 30:508–516

    Google Scholar 

  • Thomas C, Springer P, Loeb G, Berwald-Netter Y, Okun L (1972) A miniature microelectrode array to monitor the bioelectric activity of cultured cells. Exp Cell Res 74(1):61–66

    Article  Google Scholar 

  • Toimil-Molares M (2012) Characterization and properties of micro-and nanowires of controlled size, composition, and geometry fabricated by electrodeposition and ion-track technology. Beilstein J Nanotechnol 3(1):860–883

    Article  Google Scholar 

  • Tonucci R, Justus B, Campillo A, Ford C (1992) Nanochannel array glass. Science 258:783–787

    Article  Google Scholar 

  • Velliste M, Perel S, Spalding M, Whitford A, Schwartz A (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098–1101

    Article  Google Scholar 

  • Vlad A, Mátéfi-Tempfli M, Antohe V, Faniel S, Reckinger N, Olbrechts B, Crahay A, Bayot V, Piraux L, Melinte S et al (2008) Nanowire-decorated microscale metallic electrodes. Small 4(5):557–560

    Article  Google Scholar 

  • Wang H-W, Shieh C-F, Chen H-Y, Shiu W-C, Russo B, Cao G (2006) Standing [111] gold nanotube to nanorod arrays via template growth. Nanotechnology 17(10):2689–2694

    Article  Google Scholar 

  • Wu C-G, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264:1757–1759

    Article  Google Scholar 

  • Yang K, Yiacoumi S, Tsouris C (2004) Electrical double layer formation, Dekker encyclopedia nanoscience and nanotechnology pp 1001–1014

  • Yang M, Qu F, Lu Y, He Y, Shen G, Yu R (2006) Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 27(35):5944–5950

    Article  Google Scholar 

  • Yoon H, Deshpande D, Ramachandran V, Varadan V (2008) Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes. Nanotechnology 19(2):025304

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (CN) would like to thank Studienstiftung des Deutschen Volkes for supporting this research. We also want to thank Prof. Hellmann of the University of Applied Sciences Aschaffenburg for providing access to the RIE-chamber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Nick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nick, C., Quednau, S., Sarwar, R. et al. High aspect ratio gold nanopillars on microelectrodes for neural interfaces. Microsyst Technol 20, 1849–1857 (2014). https://doi.org/10.1007/s00542-013-1958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1958-x

Keywords

Navigation