Skip to main content
Log in

Lifetime modelling for microsystems integration: from nano to systems

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Due to the rapid development of IC technology the traditional packaging concepts are making a transition into more complex system integration techniques in order to enable the constantly increasing demand for more functionality, performance, miniaturisation and lower cost. These new packaging concepts (as e.g. system in package, 3D integration, MEMS-devices) will have to combine smaller structures and layers made of new materials with even higher reliability. As these structures will more and more display nano-features, a coupled experimental and simulative approach has to account for this development to assure design for reliability in the future. A necessary “nano-reliability” approach as a scientific discipline has to encompass research on the properties and failure behaviour of materials and material interfaces under explicit consideration of their micro- and nano-structure and the effects hereby induced. It uses micro- and nano-analytical methods in simulation and experiment to consistently describe failure mechanisms over these length scales for more accurate and physically motivated lifetime prediction models. This paper deals with the thermo-mechanical reliability of microelectronic components and systems and methods to analyse and predict it. Various methods are presented to enable lifetime prediction on system, component and material level, the latter promoting the field of nano-reliability for future packaging challenges in advanced electronics system integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig 19
Fig 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  • Agrawal A, Karlsson AM (2006) Obtaining mode mixity for a biomaterial interface crack using the virtual crack closure technique. Int J Fracture 141:76–98

    Article  Google Scholar 

  • Auersperg J, Kieselstein E, Schubert A, Michel B (2001) Mixed mode interfacial fracture toughness evaluation for flip-chip assemblies and CSP based on fracture mechanics approaches. In: Symposium on reliability, stress analysis, and failure prevention of the 2001 ASME international mechanical engineering congress and exposition 2

  • Auersperg J, Klein M, Michel B (2007) Optimisation of electronic assemblies towards robust design under fracture, delamination and fatigue aspects. In: Proceedings of 8th ICEPT conference, pp 167–173

  • Birolini A (1997) Quality and reliability of technical systems, 2nd edn. Springer, Berlin

  • Braun T, Wunderle B, Becker K-F, Koch M, Bader V, Aschenbrenner R, Reichl H (2006) Improved reliability of leadfree flip chip assemblies using direct underfilling by transfer molding. In: Proceedings of 31st IEMT, Putrajaya, 8–10 November 2006

  • Brunschwiler T, Michel B, Rothuizen H, Kloter U, Wunderle B, Oppermann H, Reichl H (2009) Interlayer cooling potential in vertically integrated packages structures. J Microsyst Technol 15(1):57–74. doi:10.1007/s00542-008-0690-4

    Article  Google Scholar 

  • Caers JFJM, de Fries JWC, Zhao XJ, Wong EH (2003) Some characteristics of anisotropic conductive adhesive and non-conductive adhesive flip chip on flex interconnections. J Semicond Technol Sci 3(2):122–131

    Google Scholar 

  • Darveaux R, Yang J, Sheridan R (2003) RF PA module substrate via reliability. In: Proceedings of 53th ECTC, pp 1181–1189

  • Deplanque S (2008) Lifetime prediction for solder die-attach in power applications by means of primary and secondary creep. BTU Cottbus

  • Deplanque S, Nüchter W, Wunderle B, Schacht R, Michel B 2006. Lifetime prediction of SnPb and SnAgCu solder joints of Chips on copper substrate based on crack propagation FE-analysis. In: Proceedings of EuroSimE conference

  • Dermitzaki E, Wunderle B, Bauer J, Walter H, Michel B (2008) Structure Property Correlation of epoxy resins under the influence of moisture and temperature; and comparison of Diffusion coefficient with MD-simulations. In: Proceedings of 2nd ESTC

  • Dressler M, Becker K-F, Wunderle B, Auersperg J, Reichl H (2008) Application of interfacial fracture mechanics approach for obtaining design rules for flip chip interconnections. J Microsyst Technol 15(1):83–88. doi:10.1007/s00542-008-0692-2

    Article  Google Scholar 

  • Dudek R (2007) Mechanics of microelectronics. In: Zhang GQ, van Driel WD, Fan XJ (eds) Springer, Berlin, pp 377–468

  • Dudek R, Scherzer M, Schubert A, Michel B (1998) FE-simulations for polymeric packaging materials. IEEE Trans Compon Packag Manuf Technol 21(2):301–308. doi:10.1109/95.705479

    Google Scholar 

  • Ernst LJ, Xiao A, Wunderle B, Jansen KMB, Pape H (2008) Interface characterisation and failure modeling for semiconductor packages. In: Proceedings of 10th EPTC

  • Fan XJ (2008) Mechanics of moisture for polymers: fundamental concepts and model study. In: Proceedings eurosime conference

  • Fan HB, Chan EKL, Wong CKY, Yuen MMF (2006) Investigation of moisture diffusion in electronic packages by molecular dynamics simulation. J Adhes Sci Technol 20(16):1937–1947. doi:10.1163/156856106779116588

    Article  Google Scholar 

  • Frear D, Morgan H, Burchett S, Lau J (1994) The mechanics of solder alloy interconnects. Van Nostrand, New York

    Google Scholar 

  • Guojun H, Tay A (2005) Application of modified virtual crack closure method on delamination analysis in a plastic EC package during lead-free solder reflow. In: Proceedings of EPTC, pp 555–560

  • Hacke PL, Sprecher AF, Conrad H (1993) Thermomechanical fatigue of 63Sn–37Pb solder joints, Van Nostrand, New York, pp 466–499

  • Haddad YM (1995) Viscoelasticity of engineering materials. Chapman & Hall, London

    Google Scholar 

  • Haque MA, Saif MTA (2003) A review of MEMS-based microscale and nanoscale tensile and bending testing. Exp Mech 43(3):248–255. doi:10.1007/BF02410523

    Article  Google Scholar 

  • ITRS (2007) The international technology roadmap for semiconductors. http://public.itrs.net

  • Kaulfersch E, Rzepka S, Ganeshan V, Möller A, Michel B (2007) Fast shear testing and FEM simulations for determination of dynamic mechanical behavior of SnAgCu BGA solder joints. In: Proceedings of SPIE 6, p 116

  • Keller J, Vogel D, Schubert A, Michel B (2003) Applied scanning probe methods. In: Bhushan B (ed) Springer, Berlin

  • Krüger R (2002) The virtual crack closure technique: history, approach and applications. NASA/CR-2002-211628, ICASE Report No. 2002-10

  • Lau JH (1993) Thermal stress and strain in microelectronic packaging. Van Nostrand, New York

    Google Scholar 

  • Liu J, Lu XZ, Cao L (2007) Reliability aspects of electronics packaging technology using anisotropic conductive adhesives. J Shanghai Univ 11(1):1–16 (English edition). doi:10.1007/s11741-007-0101-6

    Article  Google Scholar 

  • Liu Y, Irving S, Luk T, Kinzer D (2008) Trends of power electronics packaging and modeling. In: Proceedings of 10th EPTC

  • Manson SS (1966) Thermal stress and low cycle fatigue. McGraw-Hill, New York

    Google Scholar 

  • Matsunaga T, Uegai Y (2006) Thermal fatigue life evaluation of aluminium wire bonds. In: Proceedings of 2nd ESTC

  • May D, Wunderle B, Abo Ras M, Faust W, Gollhard A, Schacht R, Michel B (2008) Material characterization and non-destructive failure analysis by transient pulse generation and IR-thermography. In: Proceedings of 14th Therminic

  • Meyyappan KN, Hansen P, McCluskey P (2003) Wire flexure fatigue model for asymmetric bond height. In: Procedings of IPACK conference

  • Michaelides S, Sitaraman SK (1999) Die cracking and reliable die design for flip-chip assemblies. IEEE Trans CPT 22(4):602–613

    Google Scholar 

  • Middendorf A, Griese H, Reichl H, Grimm WM (2002) Using life-cycle information for reliability assessment of electronic assemblies. Integrated reliability workshop final report, pp 176–179

  • O’Brian DJ, Mather PT, White SR (2001) Viscoelastic properties of an epoxy resin during cure. J Compos Mater 35(10):883–903. doi:10.1177/002199801772662442

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. doi:10.1557/JMR.1992.1564

    Article  Google Scholar 

  • Pucha RV, Tunga K, Sitaraman SK (2004) Accelerated thermal cycling guidelines for electronic packages in military avionics thermal environment. J Electron Packag 126:265–264. doi:10.1115/1.1756150

    Google Scholar 

  • Ramm P, Wolf JM, Wunderle B (2008a) Wafer-Level 3-D System Integration. In: Garrou PE, Ramm P, Bower CA (eds) 3-D IC integration: technology and applications, Wiley-VCH, New York

  • Ramm P, Wolf MJ, Klumpp A, Wieland R, Wunderle B, Michel B, Reichl H (2008b) Through silicon via technology—processes and reliability for wafer-level 3D system integration. In: Proceedings of 58th ECTC, pp 841–846

  • Ramminger S, Mitic G, Türkes P, Wachutka G (1999) Thermo-mechanical simulation of wire bonding joints in power module. In: Proceedings of MSM conference, pp 483–486

  • Rau I, Becker K-F, Wunderle B, Reichl H (2007) Rapid interface reliability testing of flip chip encapsulants. In: Proceedings of 57th ECTC

  • Reichl H (2007) Systems integration—requirements and technical solutions. In: Proceedings of IEEE European systems packaging workshop, Como

  • Reichl H, Wolf MJ (2006a) Hetero system integration challenges and requirements for packaging. In: Proceedings of MHSI 2006, Sendai, 6–7 November 2006

  • Reichl H, Wolf MJ (2006b) Potential technologies for wireless sensor nodes. Nano-Manufacturing Technology Pioneering Life Science for Health, Tokyo

  • Reichl H, Schubert A, Töpper M (2000) Reliability of flip-chip and chip size package. Microelectron Reliab 40:1243–1254. doi:10.1016/S0026-2714(00)00119-0

    Google Scholar 

  • Saraswat MK, Jansen KMB, Ernst LJ (2006) Cure shrinkage and bulk modulus determination for moulding compounds. In: Proceedings of 56th ESTC, pp 782–787

  • Schlottig G, Pape H, Wunderle B, Ernst L (2009) Induced delamination of silicon-molding compound interfaces. In: Proceedings of EuroSimE

  • Schneider-Ramelow M, Graf W, Schuch B (2003) Microsystems technology—solutions for the market. Trias Consult GbR, Berlin, pp 48–51

  • Schreier-Alt T, Schindler-Saefkow F, Wittler O, Kittel H (2008) Encapsulation of system in package—process characterisation and optimisation. In: Proceedings of 2nd ESTC

  • Schubert A, Dudek R, Walter H, Jung E, Gollhardt A, Michel B (2002) Lead-free flip-chip solder interconnects—materials mechanics and reliability issues. Micromaterials and nanomaterials, 1st edn. Micro Materials Centre Berlin at the Fraunhofer Institute IZM, Germany, pp 12–25

  • Schubert A, Dudek R, Auerswald E, Gollhardt A, Michel B, Reichl R (2003) Fatigue life models for SnAgCu and SnPb solder joints evaluated by experiments and simulation. In: Proceedings of 53rd electronic components and technology conference, pp 603–610

  • Shirangi MH, Fan XJ, Michel B (2008) Mechanism of moisture diffusion, hygroscopic swelling and adhesion degradation in epoxy molding compounds. In: Proceedings of 41st international symposium on microelectronics (IMAPS), pp 917–923

  • Shirangi MH, Müller WH, Michel B (2009a) Determination of Copper/EMC interface fracture toughness during manufacturing, moisture preconditioning and solder reflow process of semiconductor packages. In: Proceedings of international conference on fracture

  • Shirangi MH, Wunderle B, Wittler O, Walter H, Müller WH, Michel B (2009b) Modeling cure shrinkage and viscoelasticity to enhance the numerical methods for predicting delamination in semiconductor packages. In: Proceedings of EuroSimE conference

  • Spraul M, Nüchter W, Möller A, Wunderle B, Michel B (2007) Reliability of SnPb and Pb-free flip-chips under different test conditions. J Microelectron Reliab 47:252–258. doi:10.1016/j.microrel.2006.09.026

    Article  Google Scholar 

  • Syed A (2001) Predicting solder joint reliability for thermal, power and bend cycle within 25% accuracy. In: Proceedings of 51st electronic components and technology conference, pp 255–265

  • Vogel D, Michel B (2001) Microcrack evaluation for electronics components by AFM nanoDAC deformation measurement. In: Proceedings of IEEE-NANO 2001, pp 309–312

  • Vogel D, Lieske D, Gollhardt A, Keller J, Sabate N, Morante JR, Michel B (2005) FIB based measurements for material characterization on MEMS. In Proceedings of SPIE 5766, pp 60–69. doi:10.1117/12.599891

  • Vogel D, Lehr MU, Grillberger M, Jaschke V, Geisler H, Gollhardt A, Luczak F, Michel B (2008) Residual stress measurements on semiconductor layers utilizing stress relief techniques. In: Proceedings of semiconductor conference, Dresden, 23–24 April

  • Weinberg K, Müller WH (2008) A strategy for damage assessment of thermally stressed copper vias in microelectronics printed circuit boards. J Microelectron Reliab 48:68–82. doi:10.1016/j.microrel.2007.03.003

    Article  Google Scholar 

  • Wiese S, Schubert A, Walter H, Dudek R, Feustel F, Meusel E, Michel B (2001) Constitutive behaviour of lead-free vs. lead-containing solders—experiments on bulk specimens and flip-chip joints. In: IEEE Proceedings on electronic components and technology conference, pp 890–902

  • Wittler O (2004) Bruchmechanische Analyse von viskoelastischen Werkstoffen in elektronischen Bauteilen. Technische Universität, Berlin

    Google Scholar 

  • Wittler O, Mrossko R, Kaulfersch E, Wunderle B, Michel B (2008) Mechanical characterisation of thin metal layers by modelling of the nanoindentation experiment. In: Proceedings of 2nd ESTC

  • Wolf MJ, Reichl H (2006) The eGrain/e-Cube concept. EWSN 2006, 13.-15.2. 2006, Zurich

  • Wolf MJ, Dretschkow T, Uhlig A, Reichl H (2008) Investigation of high aspect ratio TSV copper filling with different seed layers. In: Proceedings of 58th ECTC, pp 563–570

  • Wunderle B, Michel B (2006a) Progress in reliability research in the micro and nano region. J Microelectron Reliab 46:1685–1694

    Article  Google Scholar 

  • Wunderle B, Dudek R, Michel B, Reichl H (2004a) Thermo-mechanical reliability of power flip-chip cooling concepts. In: Proceedings of 54th electronic components and technology conference, Las Vegas, pp 603–610, 1–4 June

  • Wunderle B, Nüchter W, Schubert A, Michel B, Reichl H (2004b) Parametric FE-approach to flip-chip reliability under various loading conditions. J Microelectron Reliab 44:1933–1945

    Article  Google Scholar 

  • Wunderle B, Mrossko R, Kaulfersch E, Wittler O, Ramm P, Michel B, Reichl H (2006b) Thermo-mechanical reliability of 3D-integrated structures in stacked silicon. In: Proceedings of MRS Fall Meeting, Boston, November 2006

  • Wunderle B, Kallmayer C, Walter H, Braun T, Gollhardt A, Michel B, Reichl H (2008) Failure modeling for ACA-glued flip-chip on flex assemblies. J Microsyst Technol 15:3–15. doi:10.1007/s00542-008-0701-5

    Article  Google Scholar 

  • Wunderle B, Braun T, May D, Michel B, Reichl H (2009a) Non-destructive failure analysis and simulation of encapsulated 0402 multi-layer ceramic chip capacitors under thermal and mechanical loading. J Electron Packag 131

  • Wunderle B, Dermitzaki E, Bauer J, Hoelck O, Walter H, Michel B (2009b) Molecular dynamics simulation and mechanical characterisation for the establishment of structure–property correlations for epoxy resins in microelectronics packaging applications. In: Proceedings of 10th EuroSimE

  • Yao Q, Qu J (2002) Interfacial versus cohesive failure on polymer–metal interfaces in electronic packaging—effects of interface roughness. J Electron Packaging 124:127–134. doi:10.1115/1.1459470

    Article  Google Scholar 

  • Zhao JH, Tellkamp J, Gupta V, Edwards D (2008) Experimental evaluation of the strength of silicon die by 3-point bend versus ball-on-ring tests. In: Proceedings of ITHERM conference, pp 687–694

  • Zhou J, Tee TY, Luan J (2005) Characterisation and modeling of hygroscopic swelling and its impact on failures of a flip-chip package with no-flow underfill. In: Proceedings of electronic packaging technology conference, pp 561–568

Download references

Acknowledgments

The authors would like to acknowledge the intensive and fruitful cooperation with their Fraunhofer colleagues at IZM. Much of the methodology and material presented in this paper has been developed thanks to this cooperation and is also due to the strong support and encouragement of Prof. H. Reichl. Many thanks therefore to Dr. H. Oppermann, Dr. M. Schneider-Ramelow, K. F. Becker, T. Braun, C. Kallmayer, M. J. Wolf, Dr. S. Guttowski, Dr. T. Schreier-Alt, Dr. K. Halser, Dr. J. Bauer, Dr. P. Ramm and O. Bochow-Ness. Further acknowledgements go to the authors’ department Micro Materials Centre Berlin and Chemnitz: Special thanks to Prof. R. Schacht, Drs. O. Wittler, H. Walter, R. Dudek, D. Vogel, W. Faust, O. Hoelck, S. Déplanque, M. Spraul and the Ph.D. students M. Dressler, H. Shriangi, E. Dermitzaki, G. Schlottig, A. Xiao, D. May, M. Abo Ras, T. Brunschwiler, A. Mazloum and R. Mrossko. Part of the work was carried out within the framework “Entrepreneurial Regions” of the German Federal Ministry of Education and Research. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Wunderle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunderle, B., Michel, B. Lifetime modelling for microsystems integration: from nano to systems. Microsyst Technol 15, 799–812 (2009). https://doi.org/10.1007/s00542-009-0860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0860-z

Keywords

Navigation