Skip to main content
Log in

Research development of measuring methods on the tribology characters for movable MEMS devices: a review

  • Review Article
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Micro electro-mechanical systems (MEMS) offers great promise for system integration of sensors, actuators and signal processing. However, to the movable MEMS devices, there have always been major obstacles to their realization and reliability in the past—tribology problems. Because of the size effect, the conventional frictional law is no longer feasible to MEMS devices. It is vital to do research on micro-tribology and rebuild a micro-tribology theory in which size effect must be concerned. At the same time, in order to obtain reliable experimental data to support the theory, a feasible measuring method is also necessary. This paper describes two kinds of measuring methods to realize this purpose—on-chip measuring method and off-chip measuring method. Advantages, disadvantages, research status and the application prospect of each kind of methods are all introduced. Finally, development prospect of measuring methods is mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alsem DH, Stach EA, Muhlstein CL, Dugger MT et al (2004) Utilizing on-chip testing and electron microscopy to study fatigue and wear in polysilicon structural films. Mater Res Soc 1821:1–6

    Google Scholar 

  • Bandorf R, Lüthje H, Wortmann A, Staedler T, Wittorf R (2003) Influence of substrate material and topography on the tribological behaviour of submicron coatings. Surf Coat Tech 174–175:461–464. doi:10.1016/S0257-8972(03)00400-6

    Article  Google Scholar 

  • Bushan B (2001) Tribology on the macroscale to nanoscale of microelectromechanical systems materials: a review. Proceedings of the institution of mechanical engineers, Part J. J Eng Tribol 215(1):1–18

    Google Scholar 

  • Bhushan B, Member S (1996) Nanotribology and nanomechanics of MEMS devices. Proc IEEE Micro Electro Mech Syst 1996:91–98

    Google Scholar 

  • Bouchaud J, Wicht H (2003) RF MEMS: status of the industry in 2004, application roadmap and market forecasts. Sens Acutuators A Phys 104(1):1–5

    Article  Google Scholar 

  • Deladi S, de Boer MJ, Krijnen G, Rosen D (2003) Innovative process development for a new micro-tribosensor using surface micromachining. J Micromech Microeng 13:17–22. doi:10.1088/0960-1317/13/4/303

    Article  Google Scholar 

  • Dugger MT, Hohlfelder RJ, Peebles DE (2003) Degradation of monolayer lubricants for MEMS. Proc SPIE 4980:138–150. doi:10.1117/12.478194

    Article  Google Scholar 

  • Eaton WP, Smith NF, Irwin L, Tanner DM (1998) Characterization technique for surface-micromachined devices. Proc SPIE 3514:431–437. doi:10.1117/12.323919

    Article  Google Scholar 

  • Fujita H (2001) MEMS/MOMES application to optical communication. Proc SPIE 4559:xxi–xxvii

    Google Scholar 

  • Garcia EJ, Sniegowski JJ (1995) Surface micromachined microengine. Sens Actuators A 48:203–214. doi:10.1016/0924-4247(95)00999-X

    Article  Google Scholar 

  • Gatzen HH, Beck M (2003a) Tribological investigations on micromachined silicon sliders. Tribol Int 36:279–283

    Article  Google Scholar 

  • Gatzen HH, Beck M (2003b) Wear of single crystal silicon as a function of surface roughness. Wear 254:907–910. doi:10.1016/S0043-1648(03)00245-X

    Article  Google Scholar 

  • Goel M (2004) Recent development in electroceramics: MEMS applications for energy and environment. Ceram Int 30(7):1147–1154. doi:10.1016/j.ceramint.2003.12.012

    Article  Google Scholar 

  • Hankins MG, Resnick PJ, Clews PJ et al (2003) Vapor deposition of amino-functionalized self-assembled monolayers on MEMS. Proc SPIE 4980:238–247. doi:10.1117/12.478206

    Article  Google Scholar 

  • Husak M (2005) System of models for MEMS design and realization. WSRAS Trans Syst 4(3):175–184

    Google Scholar 

  • Kakushima K, Fujita H (2004) MEMS application to characterization of field emitters and bio molecules. Proc SPIE 5455:82–88. doi:10.1117/12.548984

    Article  Google Scholar 

  • Komvopoulos K (1996) Surface engineering and microtribology for microelectromechanical systems. Wear 200:305–327. doi:10.1016/S0043-1648(96)07328-0

    Article  Google Scholar 

  • Lim MG, Chang JC, Schultz DP, Howe RT, White RM (1990) Polysilicon microstructures to characterize static friction. Proceedings of the IEEE Micro Electro Mechanical Systems-An Investigation of Micro Structures, Sensors, Actuators, Machines 1990:82–88

  • Liu R, Zhaoying Z, Wang X (2003) The application of MEMS microneedles in biomedicine. Proc Int Symp Test Meas 1:57–60

    Google Scholar 

  • Lumbantobing A, Komvopoulos K (2005) Static friction in polysilicon surface micromachines. J Micrelectromechan Syst 14(4):651–653

    Article  Google Scholar 

  • Beasley MA, Firebaugh SL (2004) MEMS thermal switch for spacecraft thermal control. Proc SPIE 5334:98–105

    Article  Google Scholar 

  • Miller SL, Sniegowski JJ, La Vigen G (2004) Friction in surface micromachined microengines. Proc SPIE 1996(2722):197–204

    Google Scholar 

  • Nagel DJ (1999) Design of MEMS and microsystems. Proc SPIE 3680(1):20–29. doi:10.1117/12.341196

    Article  MathSciNet  Google Scholar 

  • Ong Z, Al-Sarawi S (2005) Surgical application of MEMS devices. Proc SPIE 5649:849–860. doi:10.1117/12.609912

    Article  Google Scholar 

  • Patton ST, Cowan WD, Zabinski JS (1999) Performance and reliability of a new MEMS electrostatic lateral output motor. In: Annual proceedings-reliability physics (symposium), pp 179–188

  • Patton ST, Cowan WD, Eapen KC, Zabinske JS (2000) Effect of surface chemistry on the triblogy performance of a MEMS electrostatic lateral output motor. Tribol Lett 9:3–4. doi:10.1023/A:1018840023845

    Article  Google Scholar 

  • Qingliang W, Shirong G (2003) Progress of research on anotribology of microelectromechanical systems. Lubric Eng 2003(3):88–91

    Google Scholar 

  • Quanfand C, Carman GP (2000) Microscale tribology (friction) measurement and influence of crystal orientation and fabrication process. Proc IEEE 2000:657–661

  • Robert Ashurst W, Yau C, Carlo, Lee C (2001a) Alkene based monolayer films as anti-stiction coating for polysilicon MEMS. Sens Actuators A 91:239–248

  • Robert Ashurst W, Yau C, Carraro C, Maboudian R, Dugger MT (2001b) Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: a comparison to the octadecyltrichlosilane self-assembled monolayer. J Micromech Syst 10(1):41–49

    Article  Google Scholar 

  • Rossi C, Do conto T, Esteve D (2001) Design, fabrication and modelling of MEMS-based microthrusters for space application. Smart Mater Struct 10(6):1156–1162. doi:10.1088/0964-1726/10/6/304

    Article  Google Scholar 

  • Schmidt M, Wortmann A, Luthje H et al (2001) Novel equipment for friction force measurement on MEMS and micro components. Proc SPIE 4407:158–163. doi:10.1117/12.425297

    Article  Google Scholar 

  • Senft DC, Dugger MT (1997) Friction and wear in surface micromachined tribological test devices. Proc SPIE 3224:31–38. doi:10.1117/12.284533

    Article  Google Scholar 

  • Smallwood SA, Eapen KC, Patton ST, Zabinski JS (2006) Performance results of MEMS coated with a conformal DLC. Wear 260(11–12):1179–1189. doi:10.1016/j.wear.2005.07.019

    Article  Google Scholar 

  • Sundararajan S, Bhushan B (2000) Topography-induced contributions to friction force measured using an atomic force/friction microscope. J Appl Phys 88(8):4825–4831. doi:10.1063/1.1310187

    Article  Google Scholar 

  • Tanner DM, Miller WM, Eaton WP (1998) The effect of frequency on the lifetime of a surface micromachined microengine driving a load. IEEE Int Reliab Phys Symp Proc 1998:26–35

  • Tanner DM, Walraven JA, Irwin LW, Dugger MT (1999) The effect of humidity on the reliability of a surface micromachined microengine. Proceedings of the 1999 37th annual IEEE international reliability physics symposium, pp 189–197

  • Tanner DM, Dugger MT (2003) Wear mechanisms in a reliability methodology. Proc SPIE 4980:22–40. doi:10.1117/12.476345

    Article  Google Scholar 

  • Tas N, Sonnenberg T, Jansen H, Legtenberg R (1996) Stiction in surface micromachining. J Micromech Microeng 6(4):385–397. doi:10.1088/0960-1317/6/4/005

    Article  Google Scholar 

  • Tas N, Gui C, Elwenspoek M (2000) Static friction in elastic adhesive MEMS contacts, models and experiment. Proc IEEE Micro Electro Mech Syst (MEMS):193–198

  • Tas N, Gui C, Elwenspoek M (2003) Static friction in elastic adhesion contacts in MEMS. J Adhes Sci Technol 17(4):547–561. doi:10.1163/15685610360554401

    Article  Google Scholar 

  • Trimmer WSN, Gabriel KJ (1987) Design considerations for a practical electrostatic micro-motor. Sens Actuators 11(2):189–206. doi:10.1016/0250-6874(87)80016-1

    Article  Google Scholar 

  • Varadan VK, Vinoy KJ (2001) Application of MEMS in microwave and millimeter wave systems. Proc SPIE 4236:179–187. doi:10.1117/12.418756

    Article  Google Scholar 

  • Willams JA (2001) Friction and wear of rotating pivots in MEMS and other small scale devices. Wear 251:965–972. doi:10.1016/S0043-1648(01)00720-7

    Article  Google Scholar 

  • Xinbo H, Weidong W (2003) The state of the art in technologies and applications of MEMS. Mech Sci Technol 22:21–24

    Google Scholar 

  • Zhanshe G, Yonggang M, Hao W et al (2007) Measurement of static and dynamic friction coefficient of sidewalls of bulk-microfabricated MEMS devices with an on-chip micro-tribotester. Sens Actuators A Phys 135:863–869. doi:10.1016/j.sna.2006.10.008

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Aviation Research Foundation with grant No: 2007ZD51050 and the National 863 Research Program of China with grant No:2006AA04Z364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanshe Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Feng, Z., Fan, S. et al. Research development of measuring methods on the tribology characters for movable MEMS devices: a review. Microsyst Technol 15, 343–354 (2009). https://doi.org/10.1007/s00542-008-0719-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0719-8

Keywords

Navigation