Skip to main content
Log in

Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In the last decade, extensive developments of microelectromechanical systems based thermal actuator and/or electrothermal actuators have been dedicated to the applications, such as data storage devices, relays and optical switches, etc. In this paper, we demonstrated a novel planar micromechanism comprising a tilted mirror driven by a V-beam electrothermal actuator via a link beam. This electrothermally driven tilted mirror can have static displacement with a motion trace including rotational and translational movement. The rotational and translational misalignment of reflected light spot toward the core of output port fiber will lead to light attenuation. In other words, the attenuation is controlled in terms of the position of tilted mirror depending on driving dc voltage. This new micromechanism has granted us a more efficient way to perform the light attenuation regarding to the other kinds of planar variable optical attenuators. These devices were fabricated by the deep reactive ion etching process and can reach 30-dB attenuation at 7.5 V driving voltage. The polarization dependant loss is less than 0.1 dB within the 30-dB attenuation region. The static and transient characteristics of devices operated at ambient room temperature environment show good repeatability and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barber B, Giles CR, Askyuk V, Ruel P, Stulz L, Bishop D (1998) A fiber connectorized MEMS variable optical attenuator. IEEE Photon Technol Lett 10:1262–1264

    Article  Google Scholar 

  • Bashir A, Katila P, Ogier N, Saadany B, Khalil DA (2004) A MEMS based VOA with very low PDL. IEEE Photon Technol Lett 16:1047–1049

    Article  Google Scholar 

  • Cai H, Zhang XM, Lu C, Liu AQ, Khoo EH (2005) Linear MEMS variable optical attenuator using reflective elliptical mirror. IEEE Photon Technol Lett 17:402–404

    Article  Google Scholar 

  • Chen C, Lee C, Lai Y-J, Chen W-C (2003a) Development and application of lateral comb drive actuator. Jpn J Appl Phys 42(6B):4067–4073

    Google Scholar 

  • Chen C, Lee C, Lai Y-J (2003b) Novel VOA using in-plane reflective micromirror and off-axis light attenuation. IEEE Commun Mag 41(8):S16–S20

    Article  Google Scholar 

  • Chen C, Lee C, Yeh JA (2004) Retro-reflection type MOEMS VOA. IEEE Photon Technol Lett 16:2290–2292

    Article  Google Scholar 

  • Chiou JC, Lin WT (2004) Variable optical attenuator using a thermal actuator array with dual shutters. Opt Commun 237:341–350

    Article  Google Scholar 

  • Cochran KR, Fan L, DeVoe DL (2003) High-power optical micro switch fabricated by deep reactive ion etching (DRIE) Proc. SPIE, MOEMS and miniaturized systems III, Vol. 4983: 75–86

  • Costello BJ, Jones PT, Lee H-S (2003) Optical switch. US Patent 6628856

  • DeVoe DL (2002) Thermal issues in MEMS and microscale systems. IEEE Trans Components Packaging Technol 25(4):576–583

    Article  Google Scholar 

  • Ford JE, Walker JA (1998) Dynamic spectral power equalization using micro-opto mechanics. IEEE Photon. Technol Lett 10: 1440–1442

    Article  Google Scholar 

  • Gianchandani YB, Najafi K (1996) Bent-beam strain sensors. J MEMS 5(1):52–58

    Google Scholar 

  • Huang QA, Lee KS (1999) Analysis and design of a polysilicon thermal flexure actuator. J Micromech Microeng 9:64–70

    Article  Google Scholar 

  • Isamoto K, Kato K, Morosawa K, Chong H, Fujita H, Toshiyoshi H (2004) A 5-Voperated MEMS variable optical attenuator by SOI bulk micromachining. IEEE J Sel Top Quantum Elect 10:570–578

    Article  Google Scholar 

  • Kim YY, Yun SS, Park CS, Lee J-H, Lee YG, Lee HK, Yoon SK, Kang JS (2004) Refractive variable optical attenuator fabricated by silicon deep reactive ion etching. IEEE Photon Technol Lett 16:485–487

    Article  Google Scholar 

  • Lee C (2005a) Monolithic-integrated 8CH MEMS variable optical attenuators. Sens and Actuators A 123–124:596–601

    Google Scholar 

  • Lee C (2005b) Arrayed variable optical attenuator using retro-reflective MEMS mirrors. IEEE Photon Technol Lett 17:2640–2642

    Article  Google Scholar 

  • Lee C (2006a) Novel H-beam electrothermal actuators with capability of generating bi-directional static displacement. Microsyst Technol 12:717–722

    Article  Google Scholar 

  • Lee C (2006b) MOEMS variable optical attenuator with improved dynamic characteristics based on robust design. IEEE Photon Technol Lett 18:773–775

    Article  Google Scholar 

  • Lee KC, Lee SS (2004) Deep X-ray mask with integrated electrothermal micro XY-stage for 3D fabrication. Sens Actuators A 111:37–43

    Article  Google Scholar 

  • Lee C, Wu C-Y (2005) Characterization of bi-stable micromechanism based on buckle spring and electrothermal V-beam actuators. J Micromech Microeng 15:11–19

    Article  Google Scholar 

  • Lee C, Yeh JA (2005) Development of X-beam electrothermal actuators. Microsyst Technol 11:550–555

    Article  Google Scholar 

  • Lee C, Lin Y-S, Lai Y-J, Tasi MH, Chen C, Wu C-Y (2004) 3-V driven pop-up micromirror for reflecting light toward out-of-plane direction for VOA applications. IEEE Photon Technol Lett 16:1044–1046

    Article  Google Scholar 

  • Liu AQ, Zhang XM, Lu C, Wang F, Lu C, Liu ZS (2003) Optical and mechanical models for a variable optical attenuator using a micromirror drawbridge. J Micromech Microeng 13:400–411

    Article  Google Scholar 

  • Maloney JM, Schreiber DS, DeVoe DL (2004) Large-force electrothermal linear micromotors. J. Micromech Microeng 14:226–234

    Article  Google Scholar 

  • Marxer C, Griss P, de Rooij NF (1999) A variable optical attenuator based on silicon micromechanics. IEEE Photon Technol Lett 11:233–235

    Article  Google Scholar 

  • Pan CS, Hsu W (1997) An electro-thermally and laterally driven polysilicon microactuator. J Micromech Microeng 7:7–13

    Article  Google Scholar 

  • Que L, Park JS, Gianchandani YB (2001) Bent-beam electrothermal actuators-part I: single beam and cascaded devices. J Microelectromech Syst 10:247–254

    Article  Google Scholar 

  • Robinson KC (2000) Variable optical attenuator. US Patent 6137941

  • Syms RRA, Zou H, Stagg J, Veladi H (2004) Sliding-blade MEMS iris and variable optical attenuator. J Micromech Microeng 14:1700–1710

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the grants from joint-funded research project based on Faculty Research Fund: R-263-000-358-112/133 of National University of Singapore and from Institute of Microelectronics of A*STAR, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkuo Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, C. Variable optical attenuator using planar light attenuation scheme based on rotational and translational misalignment. Microsyst Technol 13, 41–48 (2007). https://doi.org/10.1007/s00542-006-0260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-006-0260-6

Keywords

Navigation