Skip to main content

Advertisement

Log in

The effect of dexmedetomidine on arterial-cardiac baroreflex function assessed by spectral and transfer function analysis

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

The α2-adrenergic receptor agonist dexmedetomidine reportedly weakens heart rate (HR) responses to ‘rapid’ (during a few seconds) reduction in arterial pressure, but does not affect HR responses to ‘gradual’ (during 60 s) reduction in arterial pressure. As the speed of neurotransmission along the parasympathetic nerve is relatively rapid, alteration of parasympathetic-mediated arterial-cardiac baroreflex function plays a more important role in HR responses to ‘rapid’ changes in arterial pressure. We therefore hypothesized that dexmedetomidine attenuates parasympathetic-mediated arterial-cardiac baroreflex function.

Methods

Twelve healthy men received placebo, low-dose (loading, 3 μg/kg/h for 10 min; maintenance, 0.2 μg/kg/h for 60 min) (low-DEX), or moderate-dose (loading, 6 μg/kg/h for 10 min; maintenance, 0.4 μg/kg/h for 60 min) (moderate-DEX) dexmedetomidine infusions in a randomized, double-blind, crossover study. Before and after 70 min of infusion, arterial-cardiac baroreflex function was assessed by spectral and transfer function analysis between arterial pressure variability and HR variability.

Results

The high-frequency power of systolic arterial pressure (SAP) variability increased significantly with low-DEX and moderate-DEX infusions (significant interaction effects, P = 0.005), whereas the high-frequency power of R-wave–R-wave interval (RRI) variability (as an index of cardiac parasympathetic activity) did not change significantly at any dose infusions. Then, transfer function gain in the high-frequency range (as an index of parasympathetic arterial-cardiac baroreflex) decreased significantly with low-DEX and moderate-DEX infusions (significant interaction effects, P = 0.007).

Conclusions

The present results suggest that dexmedetomidine attenuates parasympathetic-mediated arterial-cardiac baroreflex function, implying weakened HR response to ‘rapid’ reduction in arterial pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Venn M, Newman J, Grounds M. A phase II study to evaluate the efficacy of dexmedetomidine for sedation in the medical intensive care unit. Intensive Care Med. 2003;29:201–7.

    PubMed  CAS  Google Scholar 

  2. Kunisawa T, Nagashima M, Hanada S, Suzuki A, Takahata O, Iwasaki H. Awake intubation under sedation using target-controlled infusion of dexmedetomidine: five case reports. J Anesth. 2010;24:789–92.

    Article  PubMed  Google Scholar 

  3. Turan A, Sen H, Sizlan A, Yanarateş O, Ozkan S, Koyuncu O, Dağli G. Dexmedetomidine: an alternation for epidural anesthesia in tension-free vaginal-tape surgery. J Anesth. 2011;25:386–91.

    Article  PubMed  Google Scholar 

  4. Ebert TJ, Hall JE, Barney JA, Uhrich TD, Colinco MD. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000;93:382–94.

    Article  PubMed  CAS  Google Scholar 

  5. Drew GM, Whiting SB. Evidence for two distinct types of postsynaptic alpha-adrenoceptor in vascular smooth muscle in vivo. Br J Anaesth. 1979;67:207–15.

    CAS  Google Scholar 

  6. Hogue CW Jr, Talke P, Stein PK, Richardson C, Domitrovich PP, Sessler DI. Autonomic nervous system responses during sedative infusions of dexmedetomidine. Anesthesiology. 2002;97:592–8.

    Article  PubMed  CAS  Google Scholar 

  7. Langer SZ. Presynaptic regulation of the release of catecholamines. Pharmacol Rev. 1981;32:337–61.

    Google Scholar 

  8. Unnerstall JR, Kopajtic TA, Kuhar MJ. Distribution of α2 agonist binding sites in the rat and human central nervous system: analysis of some functional, autonomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res Rev. 1984;7:69–101.

    Article  CAS  Google Scholar 

  9. Kato J, Ogawa Y, Kojima W, Aoki K, Ogawa S, Iwasaki K. Cardiovascular reflex responses to temporal reduction in arterial pressure during dexmedetomidine infusion: a double-blind, randomized and placebo-controlled study. Br J Anaesth. 2009;103:561–5.

    Article  PubMed  CAS  Google Scholar 

  10. Persson PB, Di Rienzo M, Castiglioni P, Cerutti C, Pagani M, Honzikova N, Akselrod S, Parati G. Time versus frequency domain techniques for assessing baroreflex sensitivity. J Hypertens. 2001;19:1699–705.

    Article  PubMed  CAS  Google Scholar 

  11. Iwasaki K, Zhang R, Perhonen MA, Zuckerman JH, Levine BD. Reduced baroreflex control of heart period after bed rest is normalized by acute plasma volume restoration. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1256–62.

    Article  PubMed  CAS  Google Scholar 

  12. Saitoh T, Ogawa Y, Aoki K, Shibata S, Otsubo A, Kato J, Iwasaki K. Bell-shaped relationship between central blood volume and spontaneous baroreflex function. Auton Neurosci. 2008;143:46–52.

    Article  PubMed  Google Scholar 

  13. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol. 1991;261:H1231–45.

    PubMed  CAS  Google Scholar 

  14. Triedman JK, Cohen RJ, Saul JP. Mild hypovolemic stress alters autonomic modulation of heart rate. Hypertension. 1993;21:236–47.

    Article  PubMed  CAS  Google Scholar 

  15. Ogawa Y, Iwasaki K, Aoki K, Kojima W, Kato J, Ogawa S. Dexmedetomidine weakens dynamic cerebral autoregulation as assessed by transfer function analysis and the thigh cuff method. Anesthesiology. 2008;109:642–50.

    Article  PubMed  CAS  Google Scholar 

  16. Hall JE, Uhrich TD, Barney JA, Arain SR, Ebert TJ. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine infusions. Anesth Analg. 2000;90:699–705.

    Article  PubMed  CAS  Google Scholar 

  17. Arain SR, Ebert TJ. The efficacy, side effects, and recovery characteristics of dexmedetomidine versus propofol when used for intraoperative sedation. Anesth Analg. 2002;95:461–6.

    PubMed  CAS  Google Scholar 

  18. Prielipp RC, Wall MH, Tobin JR, Groban L, Cannon MA, Fahey FH, Gage HD, Stump DA, James RL, Bennett J, Butterworth J. Dexmedetomidine-induced sedation in volunteers decreases regional and global cerebral blood flow. Anesth Analg. 2002;95:1052–9.

    PubMed  CAS  Google Scholar 

  19. Chernik DA, Gillings D, Laine H, Hendler J, Silver JM, Davidson AB, Schwam EM, Siegel JL. Validity and reliability of the Observer’s Assessment of Alertness/Sedation Scale: study with intravenous midazolam. J Clin Psychopharmacol. 1990;10:244–51.

    Article  PubMed  CAS  Google Scholar 

  20. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25:1276–86.

    Article  PubMed  CAS  Google Scholar 

  21. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation. 1996; 93:1043–65.

    Google Scholar 

  22. Dietrich A, Riese H, van Roon AM, van Engelen K, Ormel J, Neeleman J, Rosmalen JGM. Spontaneous baroreflex sensitivity in (pre)adolescents. J Hypertens. 2006;24:345–52.

    Article  PubMed  CAS  Google Scholar 

  23. Pinna GD, Maestri R. New criteria for estimating baroreflex sensitivity using the transfer function method. Med Biol Eng Comput. 2002;40:79–84.

    Article  PubMed  CAS  Google Scholar 

  24. Ogawa Y, Iwasaki K, Shibata S, Kato J, Ogawa S, Oi Y. Different effects on circulatory control during volatile induction and maintenance of anesthesia and total intravenous anesthesia: autonomic nervous activity and arterial cardiac baroreflex function evaluated by blood pressure and heart rate variability analysis. J Clin Anesth. 2006;18:87–95.

    Article  PubMed  Google Scholar 

  25. Introna R, Blair J, Martin DC. Measurement of the low-frequency component of blood pressure variability can assist the interpretation of heart rate variability data. Anesthesiology. 2003;99:237.

    Article  PubMed  Google Scholar 

  26. Muzi M, Goff DR, Kampine JP, Roerig DL, Ebert TJ. Clonidine reduces sympathetic activity but maintains baroreflex responses in normotensive humans. Anesthesiology. 1992;77:864–71.

    Article  PubMed  CAS  Google Scholar 

  27. Parati G, Di Rienzo M, Castiglioni P, Mancia G, Taylor JA, Studinger P. Point: counterpoint: cardiovascular variability is/is not an index of autonomic control of circulation. J Appl Physiol. 2006;101:676–82.

    Article  PubMed  Google Scholar 

  28. Belleville JP, Ward DS, Bloor BC, Maze M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992;77:1125–33.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was partly provided by Hospira Japan K.K. (Osaka, Japan) and institutional funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yojiro Ogawa.

About this article

Cite this article

Ehara, T., Ogawa, Y., Kato, J. et al. The effect of dexmedetomidine on arterial-cardiac baroreflex function assessed by spectral and transfer function analysis. J Anesth 26, 483–489 (2012). https://doi.org/10.1007/s00540-012-1363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-012-1363-0

Keywords

Navigation