Skip to main content
Log in

Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages and cellular FXIII-A has been associated with phagocytosis and migration of macrophages. The objective was to evaluate the consequences of intestinal inflammation on resident mucosal macrophages, focusing on the level and distribution of FXIII-A.

Methods

Plasma and colonic biopsies were collected from 67 patients with ulcerative colitis and controls. Intestinal samples were stained using immunohistochemistry for FXIII-A and macrophages (CD68, CD163 and iNOS). In situ hybridization were used to assess the intestinal expression of FXIII-A. FXIII-A antigen and activity levels were measured in plasma.

Results

Increased infiltration of CD68 positive macrophages in the inflamed mucosa coincided with increased extracellular deposited FXIII-A and decreased expression and intracellular protein levels of FXIII-A. A decreased proportion of FXIII-A/CD68/CD163 triple-positive macrophages was observed in inflamed mucosa, indicating a reduction of the M2 phenotype with consequent loss of FXIII-A. No induction of iNOS positive macrophages was observed. Stimulation of naïve monocytes with physiological concentrations of pro-inflammatory mediators negatively affected the expression of FXIII-A. Measurements in plasma confirmed the loss of both FXIII antigen and activity during active disease.

Conclusions

Intestinal inflammation in UC induces loss of M2 macrophages with subsequent loss of FXIII-A synthesis. The loss of cellular FXIII-A may impact migration and phagocytosis, and hence limit pathogen eradication in UC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schroeder V, Kohler HP. New developments in the area of factor XIII. J Thromb Haemost. 2013;11:234–44.

    Article  CAS  PubMed  Google Scholar 

  2. Muszbek L, Bereczky Z, Bagoly Z, et al. Factor XIII: a coagulation factor with multiple plasmatic and cellular functions. Physiol Rev. 2011;91:931–72.

    Article  CAS  PubMed  Google Scholar 

  3. Dickneite G, Herwald H, Korte W, et al. Coagulation factor XIII: a multifunctional transglutaminase with clinical potential in a range of conditions. Thromb Haemost. 2015;113:686–97.

    Article  PubMed  Google Scholar 

  4. Soendergaard C, Kvist PH, Seidelin JB, et al. Tissue-regenerating functions of coagulation factor XIII. J Thromb Haemost. 2013;11:806–16.

    Article  CAS  PubMed  Google Scholar 

  5. Dardik R, Loscalzo J, Eskaraev R, et al. Molecular mechanisms underlying the proangiogenic effect of factor XIII. Arterioscler Thromb Vasc Biol. 2005;25:526–32.

    Article  CAS  PubMed  Google Scholar 

  6. Zaets SB, Xu DZ, Lu Q, et al. Recombinant factor XIII diminishes multiple organ dysfunction in rats caused by gut ischemia-reperfusion injury. Shock. 2009;31:621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zaets SB, Xu DZ, Lu Q, et al. Recombinant factor XIII mitigates hemorrhagic shock-induced organ dysfunction. J Surg Res. 2011;166:e135–42.

    Article  CAS  PubMed  Google Scholar 

  8. Loof TG, Morgelin M, Johansson L, et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood. 2011;118:2589–98.

    Article  CAS  PubMed  Google Scholar 

  9. Bagoly Z, Katona E, Muszbek L. Factor XIII and inflammatory cells. Thromb Res. 2012;129(Suppl 2):S77–81.

    Article  CAS  PubMed  Google Scholar 

  10. Ordas I, Eckmann L, Talamini M, et al. Ulcerative colitis. Lancet. 2012;380:1606–19.

    Article  PubMed  Google Scholar 

  11. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.

    Article  PubMed  Google Scholar 

  12. Kamitsuji H, Tani K, Yasui M, et al. Activity of blood coagulation factor XIII as a prognostic indicator in patients with Henoch-Schonlein purpura. Efficacy of factor XIII substitution. Eur J Pediatr. 1987;146:519–23.

    Article  CAS  PubMed  Google Scholar 

  13. Song JW, Choi JR, Song KS, et al. Plasma factor XIII activity in patients with disseminated intravascular coagulation. Yonsei Med J. 2006;47:196–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ogawa T, Morioka Y, Inoue T, et al. Involvement of blood coagulation factor XIII in burn healing in the carbon tetrachloride-induced hepatic injury model in rats. Inflamm Res. 1995;44:264–8.

    Article  CAS  PubMed  Google Scholar 

  15. D’Argenio G, Cosenza V, Riegler G, et al. Serum transglutaminase correlates with endoscopic and histopathologic grading in patients with ulcerative colitis. Dig Dis Sci. 2001;46:649–57.

    Article  PubMed  Google Scholar 

  16. Burkhardt H, Zellner PR. Moller I [Factor XIII deficiency in burns]. Chirurg. 1977;48:520–3.

    CAS  PubMed  Google Scholar 

  17. Zeerleder S, Schroeder V, Lammle B, et al. Factor XIII in severe sepsis and septic shock. Thromb Res. 2007;119:311–8.

    Article  CAS  PubMed  Google Scholar 

  18. Higaki S, Nakano K, Onaka S, et al. Clinical significance of measuring blood coagulation factor XIIIA regularly and continuously in patients with Crohn’s disease. J Gastroenterol Hepatol. 2006;21:1407–11.

    CAS  PubMed  Google Scholar 

  19. Wolpl A, Lattke H, Board PG, et al. Coagulation factor XIII A and B subunits in bone marrow and liver transplantation. Transplantation. 1987;43:151–3.

    Article  CAS  PubMed  Google Scholar 

  20. Muszbek L, Yee VC, Hevessy Z. Blood coagulation factor XIII: structure and function. Thromb Res. 1999;94:271–305.

    Article  CAS  PubMed  Google Scholar 

  21. Adany R, Bardos H. Factor XIII subunit A as an intracellular transglutaminase. Cell Mol Life Sci. 2003;60:1049–60.

    CAS  PubMed  Google Scholar 

  22. Myneni VD, Hitomi K, Kaartinen MT. Factor XIII-A transglutaminase acts as a switch between preadipocyte proliferation and differentiation. Blood. 2014;124:1344–53.

    Article  CAS  PubMed  Google Scholar 

  23. Nurminskaya M, Kaartinen MT. Transglutaminases in mineralized tissues. Front Biosci. 2006;11:1591–606.

    Article  CAS  PubMed  Google Scholar 

  24. Kaetsu H, Hashiguchi T, Foster D, et al. Expression and release of the a and b subunits for human coagulation factor XIII in baby hamster kidney (BHK) cells. J Biochem. 1996;119:961–9.

    Article  CAS  PubMed  Google Scholar 

  25. Cordell PA, Kile BT, Standeven KF, et al. Association of coagulation factor XIII-A with Golgi proteins within monocyte-macrophages: implications for subcellular trafficking and secretion. Blood. 2010;115:2674–81.

    Article  CAS  PubMed  Google Scholar 

  26. Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity. 2010;32:593–604.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Torocsik D, Bardos H, Nagy L, et al. Identification of factor XIII-A as a marker of alternative macrophage activation. Cell Mol Life Sci. 2005;62:2132–9.

    Article  CAS  PubMed  Google Scholar 

  29. Spiller R. Clinical update: irritable bowel syndrome. Lancet. 2007;369:1586–8.

    Article  PubMed  Google Scholar 

  30. Schroeder KW, Tremaine WJ, Ilstrup DM. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N Engl J Med. 1987;317:1625–9.

    Article  CAS  PubMed  Google Scholar 

  31. Geboes K, Riddell R, Ost A, et al. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000;47:404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Soendergaard C, Nielsen OH, Skak K, et al. Objective quantification of immune cell infiltrates and epidermal proliferation in psoriatic skin—a comparison of digital image analysis and manual counting. Appl Immunohistochem Mol Morphol. 2015;[Epub ahead of print].

  33. Linskens RK, van Bodegraven AA, Schoorl M, et al. Predictive value of inflammatory and coagulation parameters in the course of severe ulcerative colitis. Dig Dis Sci. 2001;46:644–8.

    Article  CAS  PubMed  Google Scholar 

  34. Chiarantini E, Valanzano R, Liotta AA, et al. Hemostatic abnormalities in inflammatory bowel disease. Thromb Res. 1996;82:137–46.

    Article  CAS  PubMed  Google Scholar 

  35. Hayat M, Ariens RA, Moayyedi P, et al. Coagulation factor XIII and markers of thrombin generation and fibrinolysis in patients with inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2002;14:249–56.

    Article  CAS  PubMed  Google Scholar 

  36. Seitz R, Leugner F, Katschinski M, et al. Ulcerative colitis and Crohn’s disease: factor XIII, inflammation and haemostasis. Digestion. 1994;55:361–7.

    Article  CAS  PubMed  Google Scholar 

  37. Vrij AA, Rijken J, van Wersch JW, et al. Differential behavior of coagulation factor XIII in patients with inflammatory bowel disease and in patients with giant cell arteritis. Haemostasis. 1999;29:326–35.

    CAS  PubMed  Google Scholar 

  38. Stadnicki A, Kloczko J, Nowak A, et al. Factor XIII subunits in relation to some other hemostatic parameters in ulcerative colitis. Am J Gastroenterol. 1991;86:690–3.

    CAS  PubMed  Google Scholar 

  39. Wang Z, Wilhelmsson C, Hyrsl P, et al. Pathogen entrapment by transglutaminase—a conserved early innate immune mechanism. PLoS Pathog. 2010;6:e1000763.

    Article  PubMed  PubMed Central  Google Scholar 

  40. D’Argenio G, Calvani M, Della VN, et al. Differential expression of multiple transglutaminases in human colon: impaired keratinocyte transglutaminase expression in ulcerative colitis. Gut. 2005;54:496–502.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Takabayashi T, Kato A, Peters AT, et al. Increased expression of factor XIII-A in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2013;132:584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Plenz A, Fritz P, Konig G, et al. Immunohistochemical detection of factor XIIIa and factor XIIIs in synovial membranes of patients with rheumatoid arthritis or osteoarthritis. Rheumatol Int. 1996;16:29–36.

    Article  CAS  PubMed  Google Scholar 

  43. Bain CC, Scott CL, Uronen-Hansson H, et al. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 2013;6:498–510.

    Article  CAS  PubMed  Google Scholar 

  44. Heusinkveld M, de Vos van Steenwijk PJ, Goedemans R, et al. M2 macrophages induced by prostaglandin E2 and IL-6 from cervical carcinoma are switched to activated M1 macrophages by CD4+ Th1 cells. J Immunol. 2011;187:1157–65.

    Article  CAS  PubMed  Google Scholar 

  45. Lissner D, Schumann M, Batra A, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis. 2015;21:1297–305.

    PubMed  PubMed Central  Google Scholar 

  46. Torocsik D, Bardos H, Hatalyak Z, et al. Detection of factor XIII-A is a valuable tool for distinguishing dendritic cells and tissue macrophages in granuloma annulare and necrobiosis lipoidica. J Eur Acad Dermatol Venereol. 2014;28:1087–96.

    Article  CAS  PubMed  Google Scholar 

  47. Zaba LC, Fuentes-Duculan J, Steinman RM, et al. Normal human dermis contains distinct populations of CD11c+BDCA-1+ dendritic cells and CD163+FXIIIA+ macrophages. J Clin Invest. 2007;117:2517–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Leidi M, Gotti E, Bologna L, et al. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol. 2009;182:4415–22.

    Article  CAS  PubMed  Google Scholar 

  49. Sarvary A, Szucs S, Balogh I, et al. Possible role of factor XIII subunit A in Fcgamma and complement receptor-mediated phagocytosis. Cell Immunol. 2004;228:81–90.

    Article  CAS  PubMed  Google Scholar 

  50. Torocsik D, Szeles L, Paragh G Jr, et al. Factor XIII-A is involved in the regulation of gene expression in alternatively activated human macrophages. Thromb Haemost. 2010;104:709–17.

    Article  CAS  PubMed  Google Scholar 

  51. Jayo A, Conde I, Lastres P, et al. Possible role for cellular FXIII in monocyte-derived dendritic cell motility. Eur J Cell Biol. 2009;88:423–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank staff pathologist Lene Buhl Riis for the histopathological evaluation of biopsy specimens and Thomas Nygaard Jensen for plasma measurements of FXIII.

Authorship contributions

C Soendergaard recruited patients and performed the experiments. Measurements of plasma FXIII were conducted by H. Pelzer. The manuscript was drafted by C. Soendergaard, with intellectual input provided by O.H. Nielsen, J.B. Seidelin and P.H. Kvist, who contributed to the drafting and finalization. All authors approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer Soendergaard.

Ethics declarations

Conflict of interest

C. Soendergaard, P.H. Kvist and H. Pelzer are employed by Novo Nordisk A/S, Denmark. All authors declare that they have no conflicts of interest to disclose. The study received no external funding.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 14440 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soendergaard, C., Kvist, P.H., Seidelin, J.B. et al. Systemic and intestinal levels of factor XIII-A: the impact of inflammation on expression in macrophage subtypes. J Gastroenterol 51, 796–807 (2016). https://doi.org/10.1007/s00535-015-1152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1152-2

Keywords