Skip to main content

Advertisement

Log in

Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The rate of onset of hepatocellular carcinoma (HCC) in patients with nonalcoholic steatohepatitis (NASH) has been reported recently to be comparable to that of patients with chronic hepatitis C. However, the precise mechanism contributing to carcinogenesis in the former remains unclear. Although increased oxidative stress is presumed to play a role in carcinogenesis in patients with NASH, this relationship remains to be directly proven. In this study, we investigated the involvement of oxidative DNA damage in hepatocarcinogenesis in patients with NASH.

Methods

Patients with nonalcoholic fatty liver disease who were treated at our university hospital were eligible for enrolment in the study(n = 49). The study cohort included 30 patients with NASH without HCC (NASH without HCC), six HCC patients with NASH (NASH–HCC), and 13 patients with simple steatosis. Quantitative immunohistochemistry with a KS-400 image analyzing system was used for 8-hydroxy-2′-deoxyguanosine (8-OHdG) detection.

Results

The 8-OHdG content in the liver tissue of NASH–HCC patients was significantly different from that in the other patients. The median immunostaining intensity was 8.605 in the NASH–HCC cases, which was significantly higher than that in the cases of NASH without HCC (4.845; P = 0.003). Multivariate analysis using hepatic 8-OHdG content as a factor in addition to age and fasting blood sugar revealed a significant difference in clinicopathological factors between NASH–HCC and NASH without HCC cases. Old age (P = 0.015) and high relative immunostaining intensity for intrahepatic 8-OHdG (P = 0.037) were identified as independent factors.

Conclusions

8-OHdG content in liver tissue may serve a marker of oxidative stress and could be a particularly useful predictor of hepatocarcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ALD:

Alcoholic liver disease

APRI:

Aspartate aminotransferase to platelet ratio index

4-HNE:

4-Hydroxy-2-nonenal

NAFLD:

Nonalcoholic fatty liver disease

NAS:

NAFLD activity score

NASH:

Nonalcoholic steatohepatitis

NBNC-HCC:

Non-B non-C hepatocellular carcinoma

8-OHdG:

8-Hydroxy-2′-deoxyguanosine

ROS:

Reactive oxygen species

SS:

Simple steatosis

References

  1. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet. 2003;362:1907–17.

    Article  PubMed  Google Scholar 

  2. Shariff MIF, Cox IJ, Gomaa AI, Khan SA, Gedroyc W, Taylor-Robinson SD. Hepatocellular carcinoma: current trends in worldwide epidemiology, risk factors, diagnosis and therapeutics. Exp Rev Gastroenterol Hepatol. 2009;3:353–67.

    Article  Google Scholar 

  3. El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365:1118–27.

    Article  CAS  PubMed  Google Scholar 

  4. Ascha MS, Hanouneh IA, Lopez R, Tamimi TA-R, Feldstein AF, Zein NN. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology. 2010;51:1972–8.

    Article  PubMed  Google Scholar 

  5. Yasui K, Hashimoto E, Tokushige K, Koike K, Shima T, Kanbara Y, et al. Clinical and pathological progression of non-alcoholic steatohepatitis to hepatocellular carcinoma. Hepatol Res. 2012;42:767–73.

    Article  CAS  PubMed  Google Scholar 

  6. Yasui K, Hashimoto E, Komorizono Y, Koike K, Arii S, Imai Y, et al. Characteristics of patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2011;9:428–33.

    Article  PubMed  Google Scholar 

  7. Kawamura Y, Arase Y, Ikeda K, Seko Y, Imai N, Hosaka T, et al. Large-scale long-term follow-up study of Japanese patients with non-alcoholic fatty liver disease for the onset of hepatocellular carcinoma. Am J Gastroenterol. 2011;107:253–61.

    Article  PubMed  CAS  Google Scholar 

  8. Hashimoto E, Yatsuji S, Tobari M, Taniai M, Torii N, Tokushige K, et al. Hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. J Gastroenterol. 2009;44[Suppl 19]:89–95.

    Article  PubMed  Google Scholar 

  9. Hashimoto E, Tokushige K. Hepatocellular carcinoma in non-alcoholic steatohepatitis: growing evidence of an epidemic? Hepatol Res. 2012;42:1–14.

    Article  PubMed  Google Scholar 

  10. Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, et al. Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys. 2000;378:259–68.

    Article  CAS  PubMed  Google Scholar 

  11. Bugianesi E. Non-alcoholic steatohepatitis and cancer. Clin Liver Dis. 2007;11:191–207.

    Article  CAS  PubMed  Google Scholar 

  12. George DK, Goldwurm S, MacDonald GA, Cowley LL, Walker NI, Ward PJ, et al. Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology. 1998;114:311–8.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G–T and A–C substitutions. J Biol Chem. 1992;267:166–72.

    CAS  PubMed  Google Scholar 

  14. Kasai H, Nishimura S. Hydroxylation of guanine in nucleosides and DNA at the C-8 position by heated glucose and oxygen radical-forming agents. Environ Health Perspect. 1986;67:111–6.

    Article  CAS  PubMed  Google Scholar 

  15. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991;349:431–4.

    Article  CAS  PubMed  Google Scholar 

  16. Kato J, Kobune M, Nakamura T, Kuroiwa G, Takada K, Takimoto R, et al. Normalization of elevated hepatic 8-hydroxy-2′-deoxyguanosine levels in chronic hepatitis C patients by phlebotomy and low iron diet. Cancer Res. 2001;61:8697–702.

    CAS  PubMed  Google Scholar 

  17. Neuschwander-Tetri BA, Caldwell SH. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology. 2003;37:1202–19.

    Article  PubMed  Google Scholar 

  18. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.

    Article  CAS  PubMed  Google Scholar 

  19. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142:1592–609.

    Article  PubMed  Google Scholar 

  20. Takada A, Tsutsumi M, Okudaira M, Ohta Y, Tsujii T, Tanikawa K, et al. National survey of alcoholic liver disease in Japan (1968–91). J Gastroenterol Hepatol. 1995;10:509–16.

    Article  CAS  PubMed  Google Scholar 

  21. Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract. 2002;55:65–85.

    Article  PubMed  Google Scholar 

  22. Ogihara T, Kikuchi K, Matsuoka H, Fujita T, Higaki J, Horiuchi M, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2009). Hypertens Res. 2009;32:3–107.

    CAS  PubMed  Google Scholar 

  23. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  CAS  PubMed  Google Scholar 

  24. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  PubMed  Google Scholar 

  25. Rowe JW, Wands JR, Mezey E, Waterbury LA, Wright JR, Tobin J, et al. Familial hemochromatosis: characteristics of the precirrhotic stage in a large kindred. Medicine (Baltimore). 1977;56:197–211.

    CAS  Google Scholar 

  26. Paradis V, Mathurin P, Kollinger M, Imbert-Bismut F, Charlotte F, Piton A, et al. In situ detection of lipid peroxidation in chronic hepatitis C: correlation with pathological features. J Clin Pathol. 1997;50:401–6.

    Article  CAS  PubMed  Google Scholar 

  27. Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol. 2002;37:56–62.

    Article  CAS  PubMed  Google Scholar 

  28. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147–52.

    CAS  PubMed  Google Scholar 

  29. Tokushige K, Takakura M, Tsuchiya-Matsushita N, Taniai M, Hashimoto E, Shiratori K. Influence of TNF gene polymorphisms in Japanese patients with NASH and simple steatosis. J Hepatol. 2007;46:1104–10.

    Article  CAS  PubMed  Google Scholar 

  30. Wieckowska A, Papouchado BG, Li Z, Lopez R, Zein NN, Feldstein AE. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol. 2008;103:1372–9.

    Article  CAS  PubMed  Google Scholar 

  31. Sugimoto K, Takei Y. Clinicopathological features of non-alcoholic fatty liver disease. Hepatol Res. 2011;41:911–20.

    Article  PubMed  Google Scholar 

  32. Ichiba M, Maeta Y, Mukoyama T, Saeki T, Yasui S, Kanbe T, et al. Expression of 8-hydroxy-2′-deoxyguanosine in chronic liver disease and hepatocellular carcinoma. Liver Int. 2003;23:338–45.

    Article  CAS  PubMed  Google Scholar 

  33. Jo M, Nishikawa T, Nakajima T, Okada Y, Yamaguchi K, Mitsuyoshi H, et al. Oxidative stress is closely associated with tumor angiogenesis of hepatocellular carcinoma. J Gastroenterol. 2011;46:809–21.

    Article  CAS  PubMed  Google Scholar 

  34. Nishikawa T, Nakajima T, Katagishi T, Okada Y, Jo M, Kagawa K, et al. Oxidative stress may enhance the malignant potential of human hepatocellular carcinoma by telomerase activation. Liver Int. 2009;29:846–56.

    Article  CAS  PubMed  Google Scholar 

  35. Fujita N, Miyachi H, Tanaka H, Takeo M, Nakagawa N, Kobayashi Y, et al. Iron overload is associated with hepatic oxidative damage to DNA in nonalcoholic steatohepatitis. Cancer Epidemiol Biomarkers Prev. 2009;18:424–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, S., Miyanishi, K., Kobune, M. et al. Increased hepatic oxidative DNA damage in patients with nonalcoholic steatohepatitis who develop hepatocellular carcinoma. J Gastroenterol 48, 1249–1258 (2013). https://doi.org/10.1007/s00535-012-0739-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0739-0

Keywords

Navigation