Skip to main content

Advertisement

Log in

Climate impact of high northern vegetation: Late Miocene and present

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Late Miocene belongs to the late phase of the Cenozoic. Climate at that time was still warmer and more humid as compared to today, especially in the high latitudes. Corresponding to the climate situation, palaeobotanical evidences support that vegetation in the high northern latitudes changed significantly from the Late Miocene until today. To quantify the climate impact of this vegetation change, we analyse how vegetation in the high northern latitudes contribute to climate evolution. For that, we perform climate modelling sensitivity experiments for the present and for the Late Miocene (Tortonian, 11–7 Ma). For our present-day sensitivity experiment, we introduce the Tortonian vegetation in the high northern latitudes. For our Tortonian sensitivity experiment, we introduce the modern vegetation on the same grid cells. In the Tortonian and in the present, the modern vegetation leads to a strong cooling of the northern extratropics (up to −4°C). Nevertheless, the meridional heat transports remain nearly unchanged in both cases. In general, the vegetation impact on climate is similar in the Tortonian and in the present. However, some exceptions occur. Due to the Tethys Ocean in the Tortonian, temperatures decline only weakly in eastern Europe and western Asia. In the Tortonian climate, temperatures on the Sahara realm rise (up to +1.5°C), while the temperatures do not change remarkably in the present-day climate. This different behaviour is caused by a stronger and more sensitive hydrological cycle on the Sahara region during the Tortonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Axelrod DI, Bailey HP (1969) Paleotemperature analysis of terriary floras. Palaeogeogr Palaeoclimato Palaeoecol 6:163–195

    Article  Google Scholar 

  • Baghai NL, Jorstad RB (1995) Paleontology, paleoclimatology and paleoecology of the late middle Miocene musselshell creek flora, clearwater county idaho. A preliminary study of a new fossil flora. PALAIOS 10:424–436

    Article  Google Scholar 

  • Bonan GB, Pollard D, Thompson SL (1992) Effects of boreal forest vegetation on global climate. Nature 359:716–718

    Article  Google Scholar 

  • Bonan GB, Chapin FS, Thompson SL (1995) Boreal forest and tundra ecosystems as components of the climate system. Clim Chang 29:145–167

    Article  Google Scholar 

  • Bruch AA, Gabrielyan IG (2002) Quantitative data of the Neogene climatic development in Armenia and Nakhichevan. Acta Univ Carol Geol 46:41–48

    Google Scholar 

  • Bruch AA, Utescher T, Olivares CA, Dolakova N, Ivanov D, Mosbrugger V (2004) Middle and Late Miocene spatial temperature patterns and gradients in Europe–Preliminary results based on palaeobotanical climate reconstructions. CFS 249:15–27

    Google Scholar 

  • Bruch AA, Utescher T, Mosbrugger V, Gabrielyan I, Ivanov DA (2006) Late Miocene climate in the circum-Alpine realm–a quantitative analysis of terrestrial palaeofloras. Palaeogeogr Palaeoclimato Palaeoecol 238:270–280

    Article  Google Scholar 

  • Cerling TE, Harris JM, Macfadden BJ, Leakey MG, Quade J, Eisenmann V, Ehleringer JR (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153–158

    Article  Google Scholar 

  • Claussen M (1998) On multiple solutions of the atmosphere-vegetation system in present-day climate. Glob Chang Biol 4:549–559

    Article  Google Scholar 

  • Claussen M, Gayler V (1997) The greening of the Sahara during the mid-holocene: results of an interactive atmosphere-biome model. Glob Ecol Biogeogr Lett 6:369–377

    Article  Google Scholar 

  • Claussen M, Brovkin V, Ganopolski A, Kubatzki C, Petoukhov V (1998) Modelling global terrestrial vegetation-climate interaction. Philos Trans R Soc Lond B Biol Sci 353:53–63

    Article  Google Scholar 

  • Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre MF, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dynam 18(7):579–586

    Article  Google Scholar 

  • Donat M, Kaspar F (2006) Simulations of the last interglacial and the subsequent glacial inception with the Planet Simulator. CPD 2:1347–1369

    Google Scholar 

  • Dutton JF, Barron EJ (1997) Miocene to present vegetation changes: a possible piece of the Cenozoic puzzle. Geology 25(1):39–41

    Article  Google Scholar 

  • Fluteau F, Ramstein G, Besse J (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J Geophys Res D Atmospheres 104:11,995–12,018

    Google Scholar 

  • Fraedrich K, Kirk E, Lunkeit F (1998) PUMA: Portable University Model of the atmosphere. DKRZ Technical Report 16

  • Fraedrich K, Jansen H, Kirk E, Lunkeit F (2005a) The Planet Simulator: green planet and desert world. Meteorol Z 14:305–314

    Article  Google Scholar 

  • Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005b) The Planet Simulator: towards a user friendly model. Meteorol Z 14:299–304

    Article  Google Scholar 

  • Grosfeld K, Lohmann G, Rimbu N, Fraedrich K, Lunkeit F (2007) Atmospheric multidecadal variations in the North Atlantic realm: proxy data, observations, and atmospheric circulation model studies. CP 3(1):39–50

    Google Scholar 

  • Harris N (2006) The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr Palaeoclimato Palaeoecol 241:4–15

    Article  Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea–palaeogeography, palaeobiogeography and events in the central paratethys during the miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Article  Google Scholar 

  • Heer O (1868) Flora fossilis Arctica 1. Die fossile Flora der Polarländer enthaltend die in Nordgrönland, auf der Melville-Insel, im Banksland, am Mackenzie. Island und in Spitzbergen entdeckten fossilen Pflanzen, Zürich

    Google Scholar 

  • Hély C, Braconnot P, Watrin J, Zheng W (2009) Climate and vegetation: simulating the African humid period. Compt Rendus Geosci 341:671–688

    Article  Google Scholar 

  • Henrot AJ, Francois L, Favre E, Butzin M, Ouberdous M, Munhoven G (2010) Effects of CO2, continental distribution, topography and vegetation changes on the climate at the middle miocene: a model study. Clim Past 6(5):675–694

    Google Scholar 

  • Herold N, Seton M, Müller RD, You Y, Huber M (2008) Middle Miocene tectonic boundary conditions for use in climate models. Geochem Geophy Geosy 9:Q10009

    Article  Google Scholar 

  • Jacobs BF (2004) Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philos Trans R Soc Lond B Biol Sci 359:1573–1583

    Article  Google Scholar 

  • Jacobs BF, Deino AL (1996) Test of climate–leaf physiognomy regression models, their application to two Miocene floras from Kenya, and 40Ar/39Ar dating of the Late Miocene Kapturo site. Palaeogeogr Palaeoclimato Palaeoecol 123:259–271

    Article  Google Scholar 

  • Junge MM, Blender R, Fraedrich K, Gayler V, Luksch U, Lunkeit F (2005) A world without Greenland: impacts on the Northern Hemisphere winter circulation in low- and high-resolution models. Clim Dyn 24:297–307

    Article  Google Scholar 

  • Kleiven HF, Jansen E, Fronval T, Smith TM (2002) Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)–ice-rafted detritus evidence. Palaeogeogr Palaeoclimato Palaeoecol 184:213–223

    Article  Google Scholar 

  • Kutzbach JE, Behling P (2004) Comparison of simulated changes of climate in Asia for two scenarios: early Miocene to present, and present to future enhanced greenhouse. Global Planet Change 41:157–165

    Article  Google Scholar 

  • Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443

    Article  Google Scholar 

  • Liu X, Yin Z-Y (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeogr Palaeoclimato Palaeoecol 183:223–245

    Article  Google Scholar 

  • Lunkeit F, Borth H, Böttinger M, Frädrich K, Jansen H, Kirk E, Kleidon A, Luksch U, Paiewonsky P, Schubert S, Sielmann S, Wan H (2010) Planet simulator: reference manual version 16. Report. http://www.mi.uni-hamburg.de/fileadmin/files/forschung/theomet/planet_simulator/downloads/PS_ReferenceManual.pdf

  • Micheels A (2003) Late Miocene climate modelling with ECHAM4/ML–The effects of the palaeovegetation on the Tortonian climate. Dissertation, University of Tübingen

  • Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeogr Palaeoclimato Palaeoecol 253:267–286

    Google Scholar 

  • Micheels A, Eronen J, Mosbrugger V (2009) The Late Miocene climate response to a modern Sahara desert. Global Planet Change 67:193–204

    Article  Google Scholar 

  • Mikolajewicz U, Crowley TJ (1997) Response of a coupled ocean/energy balance model to restricted flow through the Central American isthmus. Paleoceanography 12(3):429–441

    Article  Google Scholar 

  • Mikolajewicz U, Maier-Reimer E, Crowley TJ, Kim KJ (1993) Effect of Drake and Panamanian gateways on the circulation of an ocean model. Paleoceanography 8(4):409–426

    Article  Google Scholar 

  • Molnar P (2005) Mio-pliocene growth of the Tibetan plateau and evolution of East Asian climate. Palaeontol Electron 8:1–23

    Google Scholar 

  • Molnar P, England P, Martinod J (1993) Mantle dynamics, uplift of the Tibetan Plateau and the Indian monsoon. Rev Geophys 31(4):357–396

    Article  Google Scholar 

  • Moran K, Backman J, Brinkhuis H, Clemens SC (2006) The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441:601–605

    Article  Google Scholar 

  • Mosbrugger V, Utescher T, Dilcher DL (2005) Cenozoic continental climatic evolution of Central Europe. PNAS 102:14964–14969

    Article  Google Scholar 

  • Mudie PJ, Helgason J (1983) Palynological evidence for Miocene climatic cooling in eastern Iceland about 9.8 Myr ago. Nature 303:689–692

    Article  Google Scholar 

  • New M, Hulme M, Jones P (1999) Representing twentieth-century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J Climate 12:829–856

    Article  Google Scholar 

  • Pagani M, Arthur A, Freeman KH (1999) Miocene evolution of atmospheric carbon dioxide. Paleoceanography 14:273–292

    Article  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603

    Article  Google Scholar 

  • Pearson PN, Palmer MR (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699

    Article  Google Scholar 

  • Pickford M (2000) Crocodiles from the Beglia Formation, Middle/Late Miocene boundary, Tunisia, and their significance for Saharan palaeoclimatology. Annls Paléont 86:59–67

    Article  Google Scholar 

  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovac M (2004) Lithological-paleogeographic maps of Paratethys. 10 maps Late Eocene to Pliocene. CFS 250:1–46

    Google Scholar 

  • Prell WL, Kutzbach JE (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature 360:647–652

    Article  Google Scholar 

  • Prentice C, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over past 30 million years. Nature 386:788–795

    Article  Google Scholar 

  • Rögl F (1998) Palaeogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene to Miocene). Ann Naturhist Mus Wien 99 A:279–310

    Google Scholar 

  • Romanova V, Lohmann G, Grosfeld K, Butzin M (2006a) The relative role of oceanic heat transport and orography on glacial climate. Quaternary Sci Rev 25:832–845

    Article  Google Scholar 

  • Romanova V, Lohmann G, Grosfeld K (2006b) Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Clim Past 2:31–42

    Article  Google Scholar 

  • Royer DL, Wing SL, Beerling DJ, Jolley DW, Koch PL, Hickey LJ, Berner RA (2001) Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292:2310–2313

    Article  Google Scholar 

  • Ruddiman WF, Kutzbach JE, Prentice IC (1997) Testing the climatic effects of orography and CO2 with general circulation and biome models. In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Press, New York, pp 203–235

    Chapter  Google Scholar 

  • Schneck R (unpublished) Global climate sensitivity to large-scale deforestation–model simulations for understanding processes. Dissertation at the University of Frankfurt, pp 327

  • Schuster M, Duringer P, Ghienne J-F, Vignaud P, Mackaye HT, Likius A, Brunet M (2006) The age of the Sahara desert. Science 311:821

    Article  Google Scholar 

  • Schuster M, Duringer P, Ghienne J-F, Roquin C, Sepulchre P, Moussa A, Lebatard A-E, Mackaye HT, Likius A, Vignaud P, Brunet M (2009) Chad bas paleoenvironments of the Sahara since the Late Miocene. Compt Rendus Geosci 341:603–611

    Article  Google Scholar 

  • Scotese CR (2004) A continental drift flipbook. J Geol 112:729–741

    Article  Google Scholar 

  • Senut B, Pickford M, Ségalen L (2009) Neogene desertification of Africa. Compt Rendus Geosci 341:591–602

    Article  Google Scholar 

  • Sepulchre P, Ramstein G, Fluteau F, Schuster M, Tiercelin J-J, Brunet M (2006) Tectonic uplift and Eastern Africa aridification. Science 313:1419–1423

    Article  Google Scholar 

  • Spicer RA, Harris NBW, Widdow M, Herman AB, Guo S, Valdes PJ, Wolfe JA (2003) Constant elevation of southern Tibet over the past 15 million years. Nature 421:622–624

    Article  Google Scholar 

  • Steppuhn A, Micheels A, Geiger G, Mosbrugger V (2006) Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed layer ocean model with adjusted flux correction. Palaeogeogr Palaeoclimato Palaeoecol 238:399–423

    Article  Google Scholar 

  • Steppuhn A, Micheels A, Bruch AA, Uhl D, Utescher T, Mosbrugger V (2007) The sensitivity of ECAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global Planet Change 57(3–4):189–212

    Article  Google Scholar 

  • Tiedemann R, Sarnthein M, Stein R (1989) Climatic changes in the western Sahara: Aeolo-Marine sediment record of the last 8 Million years (SITES 657–661). Proc ODP, Sci Results 108:241–277

    Google Scholar 

  • Wang J, Wang YJ, Liu ZC, Li JQ, Xi P (1999) Cenozoic environmental evolution of the Quaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr Palaeoclimato Palaeoecol 152:37–47

    Article  Google Scholar 

  • Wang WM, Saito T, Nakagawa T (2001) Palynostratigraphy and climatic implications of Neogene deposits in the Himi area of Toyama prefecture, Central Japan. Rev Palaeobot Palyno 117:281–295

    Article  Google Scholar 

  • White JM, Ager TA, Adam DP, Leopold EB, Liu G, Jette H, Schweger CE (1997) An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeogr Palaeoclimato Palaeoecol 130:293–306

    Article  Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, Oxford

    Google Scholar 

  • Wolfe JA (1985) Distribution of major vegetational types during the Tertiary. In: Sundquist ET, Broecker WS (eds) The carbon cycle and atmospheric CO2 Natural variations Archean to Present. American Geophysical Union, Washington D.C., pp 357–375

    Chapter  Google Scholar 

  • Wolfe JA (1994) An analysis of Neogene climates in Beringia. Palaeogeogr Palaeoclimato Palaeoecol 108:207–216

    Article  Google Scholar 

  • Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Climate 18:4374–4380

    Article  Google Scholar 

  • Xu J-X, Ferguson DK, Li C-S, Wang Y-F (2008) Late Miocene vegetation and climate of the Lühe region in Yunnan, southwestern China. Rev Palaeobot Palyno 148:36–59

    Article  Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the comments of our two anonymous reviewers, which helped to improve our manuscript. This work is a contribution to the NECLIME project and was supported by the DFG within the project FOR 1070, the federal state Hessen (Germany) within the LOEWE initiative. The model Planet Simulator was kindly provided by Prof. Fraedrich and his research team from the Meteorological Institute of the University of Hamburg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Schneck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneck, R., Micheels, A. & Mosbrugger, V. Climate impact of high northern vegetation: Late Miocene and present. Int J Earth Sci (Geol Rundsch) 101, 323–338 (2012). https://doi.org/10.1007/s00531-011-0652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0652-4

Keywords

Navigation